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Abstract

This paper contains an empirical dynamic model of supply and demand in the mar-

ket for digital cameras with endogenous product innovation. On the demand side, het-

erogeneous consumers time optimally the purchase of goods depending on the expected

evolution of prices and characteristics of available cameras. On the supply side, firms

introduce new camera models accounting for the dynamic value of new products and the

optimal behavior of consumers. The model is estimated using data from the market for

digital cameras and the estimated model replicates rich dynamic features of the data. The

estimated model is used to perform counterfactual computations, which suggest that more

competition or lower product introduction costs generate more product variety but lower

average product quality.
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1 Introduction

This paper develops an empirical model of demand and supply for durable goods that accounts

for the dynamic incentives of both consumers and firms and that allows endogenous product

innovation over time. The model is tailored to the case of the market for digital cameras

during the early stages of the diffusion of digital cameras between 1998 and 2001, when the

quality of cameras was increasing rapidly and their price was falling. The model accounts for

the incentives of consumers to time optimally the purchase of a digital camera depending on

the perceived evolution of product characteristics and prices. On the supply side, the model

focuses on the incentives of firms to introduce new products accounting for the dynamics of

the market.

On the demand side, the paper contributes to a growing literature on estimation of dy-

namic models of demand for differentiated products which includes Chintagunta and Song

(2003), Erdem, Imai and Keane (2003), Gowrisankaran and Rysman (2006) and Hendel and

Nevo (2006). Instead of using a nested fixed point algorithm that requires the computation

of the dynamic problem of individuals along the estimation algorithm, this paper proposes a

novel technique that uses a reduced form of the dynamic problem solution. The specification

facilitates dramatically the estimation of dynamic demand, specially when using product-level

data; it also nests the standard model as described in Berry, Levinsohn and Pakes (1995)–

henceforth referred to as BLP.

Similarly to some of the papers mentioned above, this paper relies on restricting the

dynamic behavior of consumers. Specifically, the model allows them to condition their decision

to purchase any product only on the current realization of a scalar state variable that is a

sufficient statistic for distribution of expected payoffs. In other words, it is assumed that

the maximum expected payoff that consumers can get from participating in the market is

Markovian. As already recognized by others (e.g. Hendel and Nevo (2006)), consumers are

expected to condition their behavior on all the variables that affect firm behavior. Therefore,

such assumption (first proposed in the context of durable goods demand by Melnikov (2000))

is difficult to reconcile with a general supply model, in which firms condition their actions on

the actions of each individual competitor.

This paper constructs a supply model that is consistent with the adopted demand model.

Specifically, it takes advantage of the large number of different products with very low market
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shares and the very rapid innovation in the market for digital cameras, which imply that

firms’ decisions regarding the introduction and pricing of individual products have a negligible

effect on overall market variables. The model also requires that the expectations of firms

be consistent with observed behavior in a manner that is similar to the models of social

interactions as described, for example, in Brock and Durlauf (2001). The approach can

also be related to recent work by Weintraub, Benkard and Van Roy (2007) on “oblivious

equilibria” in which agents condition their strategies on average industry information. The

main shortcoming of the model is the absence of explicit strategic interactions among firms,

which I argue are not important due to the very large number of products and the fact that

product introduction decisions seem to be only loosely correlated with firms’ market shares.

There is a growing literature on the estimation of static models of strategic quality choice

based on static models, e.g. Mazzeo (2002), Seim (2007) and Jia (2006). While there is a

growing body of empirical literature on the estimation of dynamic games, such techniques

require the availability of a long history of repeated interactions across firms and are not

applicable in the context of our data set. Instead, this paper focuses on the dynamics of

product innovation in the market for digital cameras1. The result is an estimable model of

endogenous product innovation in a market for differentiated products that has no precedent

in the empirical microeconomic literature2.

The paper is organized as follows: in the next section, the data set on which the estima-

tion is based will be introduced and described. In the third section, the detailed model of

market equilibrium is discussed. In the fourth section the empirical implementation and the

estimation results are presented. The last section contains a concluding discussion.

2 Data: the U.S. digital cameras market

The methodology proposed in this paper is tailored specifically to study the digital photo-

cameras market, which is a perfect example of a growing durable good market with a rapidly

improving technology, and its study may give insights onto similar cases. The data on which

1See Holmes (2005) for dynamic a model of location choice that also abstracts from strategic interactions.
2There are two recent unpublished empirical papers that endogenize the behavior of firms in dynamic

environments: Chen, Esteban and Shum (2008) construct a model of dynamic pricing that is calibrated using

U.S. automobile data. The recent work by Goettler and Gordon (2008) endogenizes innovation in the U.S.

market for PC processors.
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the estimation is based is a panel of monthly sales, prices and characteristics of more than

350 camera models aggregated into quarterly data. It spans the months between January of

1998 and September of 2001 and has coverage of around 90% of the market.

The centerpiece of a digital photocamera is a chip called Charge Coupled Device (CCD)3.

A CCD is an integrated circuit comprising an array of photosites. The higher the number of

these photosites (“pixels”), the better the quality of the picture (i.e. the resolution). Other

main components of a camera are its lenses, which may have an adjustable focal length (optical

zoom), a built-in liquid crystal display (LCD) of varying size and a magnetic storage device,

which may be fixed or removable.

As can be seen from table 1, which puts together some illustrative summary statistics,

the volume of sales of digital cameras increased throughout the whole sample span, going

from 215000 units sold in the first quarter of 1998 to the more than one million sold in the

first quarter of 20014. The growth of the size of the market is paralleled by the increase of

the quality of the sold cameras. The main indicator of the quality of a camera, in particular

during the time span of the sample, is its resolution. As can be seen, the resolution of average

available and sold cameras increased from around 0.5 to slightly more than 1.5 megapixels.

On the other hand, prices fell significantly over time: the average price paid for sold

cameras fell from more than $600 at the beginning of the sample to less than $400 at the end,

without controlling for the change in quality. A hedonic price regression was estimated using

the following specification:

𝑙𝑜𝑔(𝑝𝑗𝑡) = 𝑎𝑡 + 𝑎1𝑥
𝑟𝑒𝑠
𝑗 + 𝑎2𝑥

𝑧𝑜𝑜𝑚
𝑗 + 𝑎3𝑥

𝑐𝑎𝑟𝑑
𝑗

where 𝑥𝑟𝑒𝑠
𝑗 is the resolution (in megapixels) of camera 𝑗, 𝑥𝑧𝑜𝑜𝑚

𝑗 is the log of its optical zoom

and 𝑥𝑐𝑎𝑟𝑑
𝑗 is an indicator variable that takes value one when the camera has a mobile storage

device. The time-changing variable 𝑎𝑡 is estimated as a fixed time effect that captures the part

of price variation that is not explained by the other included characteristics. The coefficients

of the included characteristics are shown in table 2 and the estimated time effects, which are

all significant, are displayed in figure 1. The clearly decreasing trend of the estimated fixed

3An alternative technology called CMOS has recently gained importance in low-quality/low-cost applica-

tions, such as cell phone and PDA cameras. It was no factor, though, during the time span of this study, and

its ability to compete with CCD technology in the cameras market is still to be seen.
4There is a big seasonal effect in December of each year; for example, December sales accounted in 2000 for

30% of yearly sales.
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Table 1: Summary statistics

Quarter Units Sales # of Average Average Average Product Average

sold in million $ models price resolution zoom concentration share

1998:1 0.22 131 86 609.4 0.52 4.56 0.14 1.2%

1998:2 0.23 134 95 585.0 0.61 4.13 0.10 1.1%

1998:3 0.27 154 98 577.2 0.70 3.73 0.07 1.0%

1998:4 0.31 208 101 668.5 0.83 4.27 0.07 1.0%

1999:1 0.28 181 112 647.8 0.86 4.74 0.07 0.9%

1999:2 0.34 220 126 641.2 0.97 4.58 0.06 0.8%

1999:3 0.54 263 139 483.9 0.93 3.65 0.06 0.7%

1999:4 0.90 393 143 436.8 0.97 3.09 0.06 0.7%

2000:1 0.73 341 172 463.9 1.11 3.54 0.05 0.6%

2000:2 0.80 392 185 490.4 1.39 3.32 0.04 0.5%

2000:3 0.98 434 216 444.6 1.41 2.91 0.03 0.5%

2000:4 1.91 782 210 408.8 1.45 2.59 0.03 0.5%

2001:1 1.12 445 221 396.0 1.53 3.04 0.02 0.5%

2001:2 1.17 451 245 384.1 1.58 3.17 0.02 0.4%

Total 9.81 4528 352 461.7 1.26 3.27 0.02 0.7%

Table 2: Hedonic Regression Estimation

(dependent variable: log(𝑝𝑗𝑡)

variable coefficient t-stat

resolution (mPix) 0.5839 56.1413

zoom 0.3229 22.6011

card 0.342 14.9491
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Figure 1: Hedonic regression fixed time effects

time effects confirms the observation that camera prices fell dramatically over time, more so

after controlling for the improving quality.

Figure 2 shows a measure of the average behavior of prices and sales of camera models

after introduction5. Notice that sales tend to grow during the first months after introduction

and then fall, while prices fall on average steadily since introduction6. As will be shown below,

the model proposed in this paper will be able to reproduce well these general patterns.

As seen in table 3, the market is concentrated at the brand level, but it is very disperse

at the level of individual products, which is the level at which it is assumed that firms make

their pricing and innovation decisions. As seen in the right columns of table 1, the product-

level Herfindahl index is below 0.1 throughout the sample period and is in average below 0.05

during the last ten quarters of the sample, on which the estimation of the supply model will

be based. Notice that the average market share of individual camera models at any time after

the fourth quarter of the sample is less than 1%. Some products can have very high market

shares, reaching above 20% at times, but never for more than a quarter.

Moreover, in a market for durable goods, static market shares are misleading, since firms

compete against products that are being introduced over time. Since consumers who purchase

a product stay out of the market at least for a while, manufacturers compete against the

5The used average measures are the percent deviation of price and share from the average for each individual

model. Notice that the sample had to be reduced in order to include only the models for which the introduction

date and the following fourteen months were included in the sample.
6Behavior of prices and sales of individual products is less smooth but still conforms to this general pattern.
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Figure 2: Evolution of price and share after introduction

products that have been released in the past and against products that consumers expect to

be released in the future. If we compute market shares of individual camera models across the

whole sample as shown in the bottom rows of the table, the market shares of most individual

products are much lower than 1% and never reach 5%.

The estimation of the supply side of the market will take advantage of the low market

shares of individual products to assume that the introduction and pricing of individual prod-

ucts have a negligible expected effect on overall market variables. This notion will also be

supported by the demand estimates, which will show that cross price elasticities are econom-

ically insignificant in the data.

3 An equilibrium model of product adoption and innovation

3.1 Demand

The demand model assumes that at each point in time, consumers who have not purchased

any camera decide whether to buy a camera or not among available cameras in the market. If

they buy a camera they leave the market. If they don’t buy any camera, they get the chance

to make the decision the following period. Therefore, the specification of demand is similar to

the standard specification of a BLP-style model nested inside an optimal stopping problem.

Specifically, at each point in time a consumer 𝑖, who has not yet purchased any camera, has

to decide whether to purchase a camera and leave the market, or delay the decision one period

7



Table 3: Value Shares by Manufacturer

Jan/98 Sep/01

Sony 36.1% Sony 33.0%

Kodak 23.5% Olympus 23.4%

Olympus 20.7% Nikon 10.4%

Epson 4.8% Kodak 9.0%

Ricoh 3.5% Canon 8.0%

Casio 3.4% HP 5.6%

Canon 1.3% Fuji 2.8%

Minolta 0.8% Minolta 1.5%

HP 0.8% Toshiba 1.3%

Agfa 0.7% Polaroid 1.2%

to see whether cheaper and/or better cameras become available; if she purchases any product

𝑗 at time 𝑡, she gets a lifetime utility 𝑢𝑖𝑗𝑡 + 𝜖𝑖𝑗𝑡, where 𝜖𝑖𝑗𝑡 is an 𝑖𝑖𝑑 unobserved preference

shock that changes across time, consumers and products. Each period 𝑡 the problem of a

consumer 𝑖 who has not purchased a camera is described by the following value function:

𝐶(𝑆𝑖𝑡) = 𝑚𝑎𝑥{𝑚𝑎𝑥𝑗∈ℑ𝑡{𝑢𝑖𝑗𝑡 + 𝜖𝑖𝑗𝑡}, 𝜖𝑖0𝑡 + 𝛽𝐸[𝐶(𝑆𝑖𝑡+1)∣𝑆𝑖𝑡]} (1)

where the consumer decides to purchase a camera if the maximum lifetime utility she can get

from the set ℑ𝑡 of available cameras at time 𝑡 is higher than a reservation value 𝑅̄𝑖𝑡(𝑆𝑖𝑡) ≡
𝜖𝑖0𝑡 + 𝛽𝐸[𝐶(𝑆𝑖𝑡+1)∣𝑆𝑖𝑡]. This reservation utility contains the option value of deciding on

the purchase of the camera next period, discounted by a constant discount rate 𝛽, and an

unobserved idiosyncratic 𝑖𝑖𝑑 shock 𝜖𝑖0𝑡 that changes across consumers and time. The purchase

decision is made based on a state vector 𝑆𝑖𝑡 that contains all the variables that the consumer

uses to construct her expectations of the payoff she can get from delaying her purchase decision

one period.

This model is equivalent to a standard BLP-style model nested in an optimal stopping

problem. It is identical to the standard BLP-style model when the reservation utility is a

constant. The estimation of the model should therefore enable us to test whether the data

support the notion that consumers are timing optimally their purchases, rather than just

reacting myopically to changes in the prices and quality of available products.
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The assumption that consumers leave the market after a purchase ignores the possibility of

repeated purchases. This assumption implies that purchasing a camera leads to an absorbing

state and facilitates the computation of the model. It is also justified by the short span

of the sample, which doesn’t allow the identification of any meaningful repeated purchasing

behavior.

Let the lifetime utility of consumer 𝑖 when purchasing camera model 𝑗 be given by the

following linear function:

𝑢𝑖𝑗𝑡 + 𝜖𝑖𝑗𝑡 =
[
𝜉𝑢𝑗𝑡 + 𝛾0 +𝐷𝐵𝑗𝛾

𝐵 + 𝑥𝑟𝑒𝑠
𝑗 𝛾𝑟𝑒𝑠 + 𝑥𝑧𝑜𝑜𝑚

𝑗 𝛾𝑧𝑜𝑜𝑚 − 𝛼𝑝𝑗𝑡
]
+ 𝑥𝑟𝑒𝑠

𝑗 𝜎𝛾𝜀𝛾𝑖 + 𝜖𝑖𝑗𝑡

≡ 𝛿𝑗𝑡 + 𝑥𝑟𝑒𝑠
𝑗 𝜎𝛾𝜀𝑖 + 𝜖𝑖𝑗𝑡 (2)

Where the mean utility 𝛿𝑗𝑡 of purchasing camera 𝑗 at 𝑡 depends on the camera resolution

𝑥𝑟𝑒𝑠
𝑗 , its optical zoom 𝑥𝑧𝑜𝑜𝑚

𝑗 , a matrix of brand dummies 𝐷𝐵𝑗 multiplied by a vector of brand

effects 𝛾𝐵 , an unobserved product attribute 𝜉𝑢𝑗𝑡 and its price 𝑝𝑗𝑡. The term 𝑥𝑟𝑒𝑠
𝑗 𝜎𝛾𝜀𝑖, where

𝜀𝑖 ∼ 𝑁(0, 1), is an unobserved consumer-specific error that is correlated with the resolution

𝑥𝑟𝑒𝑠
𝑗 of the camera.

This specification is equivalent to a model where consumers have heterogeneous tastes

for resolution as in Berry (1994) or in BLP and implies that the individual resolution coeffi-

cient in the utility function is distributed 𝑁(𝛾𝑟𝑒𝑠, 𝜎2
𝛾). This correlated unobserved state will

generate cross-price substitutions among products that are higher for cameras with similar

resolution. Notice that it is assumed that consumers have heterogeneous taste coefficients

but homogeneous price coefficients. This is similar to the original BLP formulation and is

mainly justified by the difficulty associated with the separate identification of the two types

of heterogeneity from product-level data.

Assume, as it is usual in the literature, that 𝜖𝑖𝑗𝑡 and 𝜖𝑖0𝑡 are distributed 𝑖𝑖𝑑 according to

the Type I extreme value distribution. Then, the probability that a consumer will purchase

any product is given by the probability that the reservation utility is higher than the expected

value of participating in the market (also known as the “inclusive value”):

𝑟𝑖𝑡(⋅) = log
∑
𝑘∈ℑ𝑡

𝑒(𝛿𝑘𝑡+𝑥𝑟𝑒𝑠
𝑘 𝜎𝛾𝜀𝑖) (3)

Where ℑ𝑡 is the set of available products at time 𝑡. Due to the heterogeneity of the consumers’

taste for camera resolution, this value is different for every individual.
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Specifically, let 𝑅𝑖𝑡 = 𝐸𝑡

[
𝑅̄𝑖𝑡

]
= 𝛽𝐸[𝐶(𝑆𝑖𝑡+1)∣𝑆𝑖𝑡] be the “expected” reservation utility of

consumer 𝑖 at time 𝑡. The probability that consumer 𝑖 purchases product 𝑗 at time 𝑡 is:

𝑃𝑟𝑖𝑗𝑡 =

[
𝑒𝑟𝑖𝑡

𝑒𝑅𝑖𝑡 + 𝑒𝑟𝑖𝑡

][
𝑒𝛿𝑗𝑡+𝑥𝑟𝑒𝑠

𝑗 𝜎𝛾𝜀𝑖

𝑒𝑟𝑖𝑡

]
≡
[

1

1 + 𝑒𝑅𝑖𝑡−𝑟𝑖𝑡

][
𝑒𝛿𝑗𝑡+𝑥𝑟𝑒𝑠

𝑗 𝜎𝛾𝜀𝑖

𝑒𝑟𝑖𝑡

]
(4)

where the first term of this expression is the probability that the consumer buys any camera

at time 𝑡 (i.e. the participation probability) and the second term is the probability the she

buys specifically model 𝑗, conditional on purchasing a camera.

Therefore, when timing optimally the purchase of a camera the consumer only cares about

forecasting the evolution of 𝑟𝑖𝑡. It follows that the reservation utility of consumer 𝑖 is a function

of the state variables that the consumer uses to forecast the evolution of 𝑟𝑖𝑡. Assume that 𝑟𝑖𝑡

follows a first order Markov process, so that 𝑟𝑖𝑡 is a sufficient statistic for the distribution of

𝑟𝑖𝑡+1:

𝐸[𝑟𝑖𝑡+1] = Φ
𝑟(𝑟𝑖𝑡) (5)

This assumption implies that 𝑆𝑖𝑡 ≡ 𝑟𝑖𝑡, so that consumers don’t have to keep track of the

behavior of individual firms when forecasting the evolution of the market. This assumption

was first proposed by Melnikov (2000) when estimating the demand for computer printers and

has been used, more recently, by Hendel and Nevo (2006) and Gowrisankaran and Rysman

(2006).

Given (5), the reservation value for each active consumer depends only on her realized

inclusive value, i.e. 𝑅𝑖𝑡(𝑆𝑖𝑡) ≡ 𝑅𝑖𝑡(𝑟𝑖𝑡). We obtain demand for product 𝑗 by integrating the

individual demand (4) over the distribution of the consumers attributes:

𝑞𝑗𝑡(𝑥𝑗 , 𝑝𝑗𝑡, 𝜉
𝑢
𝑗𝑡) =𝑀𝑡

∫ [
1

1 + 𝑒𝑅𝑖𝑡(𝑟𝑖𝑡(𝜀𝑖))−𝑟𝑖𝑡(𝜀𝑖)

][
𝑒𝛿𝑗𝑡+𝑥𝑟𝑒𝑠

𝑗 𝜎𝛾𝜀𝑖

𝑒𝑟𝑖𝑡(𝜀𝑖)

]
𝑑𝐺𝑡(𝜀𝑖) (6)

where 𝑀𝑡 is the total number of active consumers in the market, which is obtained by taking

the exogenous number of potential consumers and subtracting those who have purchased a

camera in previous periods. Since the data set spans the initial stages of the diffusion of digital

cameras, the initial market size is going to be set equal to the total number of households in

the U.S.. 𝐺𝑡 is the distribution of consumers’ attributes 𝜀, which is initially standard normal

but then changes over time as consumers of different types select themselves out of the market

by buying a camera. Notice that as the quality of available products increases over time and

their price decreases, the inclusive value 𝑟𝑖𝑡 increases and demand for any given camera model

falls towards zero.
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To facilitate the computation of (6), the individual expected reservation utility 𝑅𝑖𝑡 will

be approximated locally around its current value using a polynomial on the individual states

and attributes7:

𝑅̃(𝑟𝑖𝑡; 𝜀𝑖) = 𝜋0 + 𝜋1𝜀𝑖 + (𝜋2 + 1)𝑟𝑖𝑡 + 𝜋3𝑟𝑖𝑡𝜀𝑖 (7)

which implies that 𝑅̃𝑖𝑡(𝑟𝑖𝑡)− 𝑟𝑖𝑡 = 𝜋0+ 𝜋1𝜀𝑖+ 𝜋2𝑟𝑖𝑡+ 𝜋3𝑟𝑖𝑡𝜀𝑖. Higher-order polynomials could

be used to make the approximation more precise, but results will show that in this case

the last interaction term has no impact on the structural preference estimates and that the

linear polynomial is a good local approximation of this value function. Notice also that any

approximation error is not separately identified from the idiosyncratic extreme value shock

𝜖𝑖0𝑡. The parameters 𝜋 = {𝜋0, 𝜋1, 𝜋2, 𝜋3}′ have no structural meaning and are not important
themselves; they just serve as a control for the dynamic incentives of consumers. In this

particular specification they are interesting because when {𝜋1 = 0, 𝜋2 = −1, 𝜋3 = 0} the
model collapses to the “static” BLP model. The nested specification will therefore allow us

to test formally the validity of the standard model in the given data.

Let ℎ𝑖𝑡(.) =
1

1+𝑒𝑅̃𝑖𝑡(.)−𝑟𝑖𝑡
be the participation probability of consumer 𝑖 at time 𝑡, i.e. the

probability that consumer 𝑖 purchases 𝑎𝑛𝑦 product at time 𝑡. Let 𝛾 = {𝛾0, 𝛾𝐵 , 𝛾𝑟𝑒𝑠, 𝛾𝑧𝑜𝑜𝑚}′

and 𝜉𝑢𝑡 = {𝜉𝑢𝑗𝑡}𝑗∈ℑ𝑡 . For any set of parameters 𝜃 = {𝜋, 𝛾, 𝛼, 𝜎𝛾} and given the vector of
unobserved product characteristics 𝜉𝑢𝑡 , a consistent estimate of product 𝑗 demand (6) can

be computed by simulating 𝑁 times the errors 𝜀𝑖 ∼ 𝑁(0, 1) at the initial period and then

updating their distribution over time using the following formula:

𝑞𝑗𝑡(𝜉
𝑢
𝑡 𝜃) =𝑀𝑡

1

𝑁

𝑁∑
𝑛=1

[
𝜓𝑛𝑡ℎ𝑛𝑡(𝑟𝑛𝑡(𝜃, 𝜀𝑛), 𝜀𝑛;𝜋)

𝑒(𝛿𝑗𝑡(𝜃)+𝑥𝑟𝑒𝑠
𝑗 𝜎𝛾𝜀𝑛))

𝑒(𝑟𝑛𝑡(𝜃,𝜀𝑛))

]

=𝑀𝑡
1

𝑁

𝑁∑
𝑛=1

𝜓𝑛𝑡

[
1

1 + 𝑒𝑅̃𝑛𝑡(.)−𝑟𝑛𝑡(𝜃,𝜀𝑛)

][
𝑒(𝛿𝑗𝑡(𝜃)+𝑥𝑟𝑒𝑠

𝑗 𝜎𝛾𝜀𝑛))

𝑒(𝑟𝑛𝑡(𝜃,𝜀𝑛))

]

=𝑀𝑡
1

𝑁

𝑁∑
𝑛=1

𝜓𝑛𝑡

[
1

1 + 𝑒𝜋0+𝜋1𝜀𝑖+𝜋2𝑟𝑛𝑡+𝜋3𝑟𝑛𝑡𝜀𝑛

][
𝑒(𝛿𝑗𝑡(𝜃)+𝑥𝑟𝑒𝑠

𝑗 𝜎𝛾𝜀𝑛))

𝑒𝑟𝑛𝑡

]
(8)

where the last equality is obtained after replacing 𝑅𝑖𝑡 with its approximation. 𝜓𝑛,𝑡 is the

“density” of consumer 𝑛 at time 𝑡. At 𝑡 = 1, 𝜓𝑛,1 = 1; at 𝑡 > 1, each consumer leaves

the market with probability ℎ𝑛𝑡 and 𝜓𝑛,𝑡>1 = 𝜓𝑛,𝑡−1(1 − ℎ𝑛,𝑡−1), so that the distribution of

consumer attributes is correlated over time. Notice that the participation probability has a

7A similar idea was used by Park (2004) to approximate the expected network externalities when estimating

demand for VCR’s.
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logistic functional, which conforms with the standard notion of product adoption behavior.

The formulation of (8) is identical to the standard BLP demand when {𝜋1 = 0, 𝜋2 =

−1, 𝜋3 = 0}. Moreover, it can be estimated using the same algorithm: for any vector 𝜃0, the

implied vector of unobserved product attributes 𝜉𝑢𝑡 (𝜃0) is solved from the equality of predicted

demand 𝑞𝑗𝑡(𝜃0) and observed demand 𝑄𝑗𝑡:

𝑞𝑗𝑡(𝜉
𝑢
𝑡 (𝜃0), 𝜃0) ≡ 𝑄𝑗𝑡 (9)

The implied unobserved product attributes correspond to the structural errors of this system

of non-linear equations and can be interacted with a matrix 𝑍𝑡 of instruments that vary across

products to construct moment conditions based on a set of orthogonality conditions:

𝑚𝑡 = 𝐸
[
𝜉𝑢𝑡 (𝜃

∗)′𝑍𝑡

]
= 0∀𝑡 (10)

where 𝜃∗ is the vector of true parameters 𝜃 and 𝑚𝑡 is a vector of moment conditions.

3.2 The model of firm behavior

In the demand model above, consumers were assumed to use current realizations of their

inclusive values to predict the value of delaying their purchase of a camera. This assumption,

which made the demand model tractable, implies that firms also use these inclusive values

to condition their actions. Otherwise, if firms were conditioning their behavior on the prices

and product innovation decisions of individual firms, consumers would also condition their

dynamic behavior on these variables.

In order to construct a supply model that is consistent with the demand model, we’ll

assume that the effect of individual firms’ decisions on each consumer’s inclusive value is

negligible. These inclusive values are endogenous in the sense that the behavior of firms relies

on their expectations regarding their evolution and should be consistent with it. But when

making individual product introduction and pricing decisions, firms will take these inclusive

values and their distribution across consumers at the observed dynamic equilibrium as given.

This assumption insures that neither firms nor consumers have to keep track of the actions

of individual firms. It will follow that firms, consistently with the assumed demand model,

condition their decisions only on the realizations of the inclusive value.

The fundamental exogenous force that drives the innovation decisions of firms is the evo-

lution of technology, reflected in the changing –presumably decreasing –production costs. Let

12



the marginal cost of producing one camera with observed characteristics 𝑥𝑗 = {𝑥𝑟𝑒𝑠
𝑗 , 𝑥𝑧𝑜𝑜𝑚

𝑗 }′

at time 𝑡 be described by the following linear function:

𝑚𝑐𝑡(𝑥𝑗 , 𝜉
𝑚𝑐
𝑗𝑡 ) = 𝜂𝑡𝑥𝑗 + 𝜉𝑚𝑐

𝑗𝑡 (11)

where 𝜉𝑚𝑐
𝑗𝑡 is a zero-mean unobserved to the econometrician cost shifter that is uncorrelated

with the other cost and demand shifters, and 𝜂𝑡 = {𝜂𝑟𝑒𝑠𝑡 , 𝜂𝑧𝑜𝑜𝑚𝑡 }′ is the vector of cost pa-
rameters at time 𝑡. Assume that the cost parameters 𝜂 ≡ {𝜂𝑡=1...𝑇 } follow an exogenous

time-changing distribution:

𝑃𝑟𝑜𝑏[𝜂𝑡 < 𝜂0] = Φ𝜂
𝑡 (𝜂

0) (12)

The marginal cost has been assumed to be constant on the produced quantity of each product

and to vary systematically only with respect to the observed characteristics. The technology

that generates this cost function is assumed to be available to all firms and to be unobserved

by consumers.

Assume that demand is described by (6) and that firms choose the observed attributes 𝑥𝑗

before introducing a new camera model. Consistently with the data set, these attributes stay

constant throughout the commercial life of the product. It is assumed that the unobserved

product characteristics 𝜉𝑢𝑗𝑡 and unobserved cost shifters 𝜉𝑢𝑗𝑡 are random and unknown at the

time the firm decides to introduce the new product. After introduction, camera model 𝑗

introduced by firm 𝐵 with observed attributes 𝑥𝑗 is expected at the time of introduction 𝜏 to

generate an expected net present value of payoffs given by:

𝑉 𝐵
𝑗𝜏 = 𝑉 𝐵

𝑗𝜏 (𝑥𝑗 , {𝑝𝑡=𝜏...𝑇𝑗}, .) = 𝐸𝜏

𝑇𝑗∑
𝑡=𝜏

𝛽𝑡−𝜏 (𝑝𝑗𝑡 −𝑚𝑐𝑡(𝑥𝑗 , .))𝑞𝑗𝑡(𝑥𝑗 , 𝑝𝑗𝑡, .) (13)

where 𝛽 is the discount rate and the sum is taken up to the time 𝑇𝑗 at which product 𝑗 drops

endogenously off the market, which occurs when demand falls close enough to zero. Notice

that this value is affected by the expected evolution of the quality and price of available

cameras as captured by the expected evolution of the inclusive values, which in turn affect

demand 𝑞𝑗𝑡.

Consider the general problem of firm 𝐵 at time 𝑡 = 𝜏 . Let 𝕀𝑙𝑡 be an indicator function

that takes value 1 if product 𝑙𝑡 is introduced into the market at time 𝑡 and is zero otherwise.

Given the set ℑ𝐵
𝜏−1 of products that the firm has already introduced in the past, the firm

maximizes the net present value of profits Π𝐵
𝜏 :

Π𝐵
𝜏 =

∑
𝑘∈ℑ𝐵

𝜏−1

𝑉 𝐵
𝑘𝜏 (𝑥𝑘)
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+𝐸𝜏

∞∑
𝑡=𝜏

𝐿𝐵
𝑡∑

𝑙𝑡=1

𝛽𝑡−𝜏
𝕀𝑙𝑡𝑚𝑎𝑥𝑥𝑙𝑡

{𝑉 𝐵
𝑙𝑡𝑡(𝑥𝑙𝑡 , .)− 𝐹𝐵

𝑡 (𝑥𝑙𝑡 , 𝜉
𝐹
𝑙𝑡 )} (14)

where the first term corresponds to the expected profits from sales of existing products and

the second term corresponds to the expected profits of products to be introduced at 𝜏 and in

later periods, whose observed quality is to be chosen by the firm at the time of introduction.

It is assumed that the firm gets to introduce an exogenous maximum number 𝐿𝐵
𝑡 of products

every period 𝑡 and that the firm incurs fixed introduction costs given by 𝐹𝐵
𝑡 (.), which depend

on the chosen characteristics of the product 𝑥𝑙𝑡 and on an unobserved state 𝜉𝐹𝑙𝑡 .

Each period 𝜏 the firm has to decide whether to introduce new camera models or not; if so,

it has to decide the optimal set of observed attributes. Then it has to choose the price of new

and old products. The set of control variables is therefore 𝑑𝜏 = {𝕀𝑙𝜏=1,...,𝐿𝐵
𝜏
, 𝑥𝑙𝜏=1,...,𝐿𝐵

𝜏
, 𝑝𝑙𝜏=1,...,𝐿𝐵

𝜏
, 𝑝𝑘∈ℑ𝐵

𝜏−1
}

and the firm’s problem is:

𝑚𝑎𝑥𝑑𝜏𝐸𝜏

[
Π𝐵

𝜏 ∣𝑑𝜏
]

(15)

The solution to this general maximum problem is difficult because, in principle, every pricing

and product introduction decision of the firm has to account for its potential effects on the

profitability of other products that the firm has introduced in the past or that the firm may

introduce in the future. It also has to take into account the potential strategic responses of

other firms.

Notice, though, that all effects of pricing and product introduction on the demand of other

products or the demand of the same product over time occur via changes on the inclusive

values of the consumers. Assuming that the inclusive values are given eliminates all these

cross-demand effects and turns the very complicated optimization problem described above

into a set of separate relatively simple maximization problems. On one hand, firms set prices

for each product at each point in time individually, solving a static profit maximization

problem. On the other hand, firms compute the expected profitability of introduced products

assuming that the evolution of the inclusive values is exogenous and decide separately whether

to introduce each new product or not if its maximum expected profitability is higher than

the corresponding introduction costs. The solution to each of these two separate problems is

described in the following two subsections.
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3.2.1 Pricing

In the context of each firm’s pricing problem, the assumption that take the inclusive values

as given is equivalent to the following condition:

∂𝑟𝑖𝑡
∂𝑝𝑗𝜏

= 0∀𝑖, 𝑡, 𝑗, 𝜏 (16)

In terms of the application below, the actual values of these derivatives are very close to zero,

due to the fact that most of the time there are more than 150 available camera models in the

market.

This condition in turn implies that the derivatives of demand for individual camera models

(6) with respect to camera prices are given by:

∂𝑞𝑗𝑡
∂𝑝𝑗𝑡

= −𝛼𝑞𝑗𝑡 −
∫ [

1

(𝑒𝑅𝑖𝑡 − 𝑒𝑟𝑖𝑡)2
(𝑒𝑅𝑖𝑡

∂𝑅𝑖𝑡

∂𝑟𝑖𝑡

∂𝑟𝑖𝑡
∂𝑝𝑗𝑡

− 𝑒𝑟𝑖𝑡
∂𝑟𝑖𝑡
∂𝑝𝑗𝑡

)

]
𝑑𝐺𝑡(𝜀𝑖) = −𝛼𝑞𝑗𝑡

∂𝑞𝑘𝑡
∂𝑝𝑗𝑡

= −
∫ [

1

(𝑒𝑅𝑖𝑡 − 𝑒𝑟𝑖𝑡)2
(𝑒𝑅𝑖𝑡

∂𝑅𝑖𝑡

∂𝑟𝑖𝑡

∂𝑟𝑖𝑡
∂𝑝𝑗𝑡

− 𝑒𝑟𝑖𝑡
∂𝑟𝑖𝑡
∂𝑝𝑗𝑡

)

]
𝑑𝐺𝑡(𝜀𝑖) = 0 (17)

where the first equality is the derivative of model 𝑗 demand with respect to its own current

price. The second term is the derivative of model 𝑗 demand with respect to the current price

of other cameras and is equal to zero. Therefore, changes in 𝑝𝑗𝑡 only affect demand for product

𝑗 at time 𝑡. This in turn implies that ∂𝑉𝑘𝑡
∂𝑝𝑗𝜏

= 0 for 𝑘 ∕= 𝑗 and 𝑡 ∕= 𝜏 .

Given (16) and (17), the first order conditions of (14) with respect to prices yield a separate

pricing equation for each camera model 𝑗 that has already been introduced into the market:

∂Π𝐵
𝜏

∂𝑝𝑗𝑡
=

∂𝑉 𝐵
𝑗𝑡

∂𝑝𝑗𝑡
= 𝑞𝑗𝑡 + (𝑝𝑗𝑡 −𝑚𝑐𝑡(𝑥𝑗 , 𝜉

𝑚𝑐
𝑗𝑡 ))

∂𝑞𝑗𝑡
∂𝑝𝑗𝑡

= 0

= 1− 𝛼(𝑝𝑗𝑡 −𝑚𝑐𝑡(𝑥𝑗 , 𝜉
𝑚𝑐
𝑗𝑡 )) = 0 (18)

Which is exactly equivalent to a static monopolistic optimization condition equating marginal

revenue and marginal cost. Indeed, in this model each firm acts as a monopolist of each of

the camera models it has already introduced. Given the adopted demand, this implies that

the price of any camera 𝑗 is given by its marginal cost plus a constant markup:

𝑝∗𝑗𝑡 = 𝑚𝑐𝑡(𝑥𝑗𝑡, 𝜉
𝑚𝑐
𝑗𝑡 ) +

1

𝛼

= 𝑥𝑟𝑒𝑠
𝑗 𝜂𝑟𝑒𝑠𝑡 + 𝑥𝑧𝑜𝑜𝑚

𝑗 𝜂𝑧𝑜𝑜𝑚𝑡 + 𝜉𝑚𝑐
𝑗𝑡 +

1

𝛼
(19)

This equation can be estimated using standard linear techniques. It implies that prices vary

across cameras depending on their observed characteristics and vary over time as production

costs decrease.
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Notice that once a camera model has been introduced, its price is determined endoge-

nously by (19). Moreover, expected prices can be computed by taking the expectations of

the production costs, which are exogenous to the firms. The expected sales of any given

camera model can also be computed replacing the expected price in the demand function (6).

Therefore, the expected profits generated by any product 𝑗 introduced at 𝜏 by firm 𝐵 can be

written only as a function of the observed characteristics 𝑥𝑗 by replacing (19) and (6) in (13):

𝑉 𝐵
𝜏 (𝑥𝑗) =

𝐸

⎡
⎣ 𝑇𝑗∑

𝑡=𝜏

𝛽𝑡−𝜏 1

𝛼
𝑀𝑡

∫ [
𝑒
𝛾0+𝐷𝐵𝑗

𝛾𝐵+(𝛾−𝛼𝜂𝑡)𝑥𝑗−1+𝑥𝑟𝑒𝑠
𝑗 𝜎𝛾𝜀𝑖

𝑒𝑟𝑖𝑡(𝜀𝑖) + 𝑒𝑅𝑖𝑡(𝑟𝑖𝑡(𝜀𝑖))

]
𝑑𝐺𝑡(𝜀𝑖)∣{𝑟𝑖𝜏 }, 𝜂𝑡

⎤
⎦ (20)

where it is assumed that before introduction the firm expects both the unobserved product

attributes and cost shocks to be zero over time, i.e. 𝜉𝑢𝑗𝑡 = 0 and 𝜉𝑚𝑐
𝑗𝑡 = 0 for all 𝑡. As indicated

before, as the inclusive values increase gradually over time, demand for any product drops

asymptotically towards zero. The sum is taken up to the time 𝑇𝑗 , when predicted demand

for model 𝑗 is sufficiently close to zero.

3.2.2 New product introduction

The objective function (14) of firms assumes that each firm 𝐵 has an exogenous maximum

number 𝐿𝐵
𝑡 of product introductions per-period. In addition, the assumption that inclusive

values are taken as given implies that the expected profitability of individual products is not

affected by individual introduction decisions:

𝐸𝑡
∂𝑟𝑖𝑡

∂𝕀𝐵𝑙𝑡
= 0∀𝑖, 𝑡, 𝑙𝑡 (21)

As a consequence, the decision to introduce one new product doesn’t affect the profitability of

other products in the market. Moreover, it doesn’t affect the decision to introduce other prod-

ucts in the current period and in the future. Given the very high number of available camera

model at any point in time, this assumption is not very strong but facilitates significantly the

estimation of the model.

Given (21), the first order conditions of the objective function (14) with respect to the

decision to introduce a new product and its corresponding vector of observed characteristics

imply that a new product is introduced if and only if it generates expected profits higher than

its introduction costs:

𝕀
𝐵∗
𝑙𝑡 = 1⇔ 𝑚𝑎𝑥𝑥𝑙𝑡

{𝑉 𝐵
𝑙𝑡𝑡(𝑥𝑙𝑡)− 𝐹𝐵

𝑡 (𝑥𝑙𝑡 , 𝜉
𝐹
𝑙𝑡 )} ≥ 0 (22)
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The condition above contains two decisions: on one hand, for each prospective product intro-

duction the firm has to choose the vector of observed product characteristics that maximizes

the expected net profits. On the other hand, if these net profits are greater than zero, the firm

introduces the new product. We can therefore rewrite (22) as the following pair of conditions:

𝕀
𝐵∗
𝑙𝑡 = 1⇔ {𝑉 𝐵

𝑙𝑡𝑡(𝑥
∗
𝑙𝑡)− 𝐹𝐵

𝑡 (𝑥
∗
𝑙𝑡 , 𝜉

𝐹
𝑙𝑡 )} ≥ 0 (23)

where 𝑥∗
𝑙𝑡
solves a system of first order conditions, one for every product characteristic:

∂𝑉 𝐵
𝑙𝑡𝑡
(𝑥∗

𝑙𝑡
)

∂𝑥𝑙𝑡

=
∂𝐹𝐵

𝑡 (𝑥
∗
𝑙𝑡
, 𝜉𝐹𝑙𝑡 )

∂𝑥𝑙𝑡

(24)

Since conditions (23) and (24) must hold for all products at the time of introduction, they

can be used to construct an estimator of the introduction costs 𝐹 (.), given an estimate of

𝑉 (.). The estimation has to account for the fact that observed introductions are a selected

sample that includes only the successful product introduction for which (23) held.

4 Estimation and results

The equilibrium model of supply and demand of digital cameras is described by the demand

equation (6), the cost equation (19), the product introduction conditions (23) and (24), the

transition of the production costs (12) and the transition of the inclusive values (5). The

model is estimated using the product-level data set described in section 2.

The estimation involves the following steps, each described in a separate subsection: first,

marginal costs are estimated from equation (19) using standard linear techniques and the

results are used to estimate the time-changing distribution (12) of marginal costs. Second,

demand is estimated using a variation of the standard BLP technique that accounts for the

dynamics of consumer behavior. Demand estimates are also used to estimate the transition

of the inclusive values (5).

Third, the estimates of the transition of the dynamic states obtained above are used to

compute the function 𝑉 (.) for every firm and every period. Fourth, the estimated function

𝑉 (.) is used to estimate introduction costs from (23) and (24) using simulation methods. The

following subsections describe these steps separately and in detail.

The identification of the model takes advantage of the assumption that inclusive values are

exogenous. On the demand side, mean taste coefficients are identified from the covariation of

individual products’ market shares and characteristics; the distribution of the taste coefficients
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is identified from the covariation of market shares across similar products8. The identification

of the consumers’ participation probabilities comes from the covariation of total sales and the

exogenous inclusive values, which is usually unexploited in standard applications of BLP.

On the supply side, cost parameters are identified from the covariation of prices and

product characteristics at any point in time. Given demand and cost parameters, the expected

profitability of introduced products is identified. Therefore, the product introduction costs

are identified from the covariation of these inferred measures of profitability and the observed

product introduction behavior, across firms and over time.

4.1 Estimation of markups and marginal cost

Cost parameters are estimated using equation (19). Given the linear marginal costs and

the assumption that the unobserved cost states 𝜉𝑚𝑐
𝑗𝑡 are uncorrelated with observed states,

estimating (19) is straightforward using OLS with observed prices and characteristics.

Table 4 contains estimates of {𝜂𝑡=1...𝑇 } and 𝛼 obtained from (19). Results, as shown,

are very precise and intuitive. The first column contains estimates of an equation with only

the resolution (in megapixels) as an observed camera attribute. The second column contains

estimates with both resolution and the log of the optical zoom as observed attributes.

These results are consistent with the notion that the cost of technology is falling sub-

stantially over time. The “cost” of one megapixel (i.e. the cost of the CCD divided by its

capability) at the beginning of the sample in the first quarter of 1998 was around $700, and

it fell to less than $200 by the end of the sample in the second quarter of 2001. The estimates

of the cost of the optical zoom (i.e. the cost of lenses) imply that a lens with 3X optical zoom

added around $200 to the cost of a camera over a lens with no zoom, whereas this incremental

cost was only around $70 by the end of the sample.

The estimate of 1/𝛼, which corresponds to the inverse of the price coefficient in the utility

function, implies that firms charged a markup of $80-$100 over the cost of the camera. The

estimate of 𝛼 will be replaced on the demand equation (6) to estimate the remaining demand

parameters. Notice that estimating 𝛼 from this equation facilitates the estimation of the

demand model, given the lack of adequate instruments for the prices of individual products.

The estimates of the cost parameters are used to estimate its distribution over time, which

firms use to compute the expected evolution of production costs and prices. Assume that the

8This identification argument is identical in any application of BLP to product-level data.
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Table 4: Estimation of markups and marginal cost

𝑥𝑗 = {𝑥𝑟𝑒𝑠
𝑗 } 𝑥𝑗 = {𝑥𝑟𝑒𝑠

𝑗 , 𝑥𝑧𝑜𝑜𝑚
𝑗 }

Parameter Estimate (s.e) Estimate (s.e)

1/𝛼 102.3 ( 9.119 ) 81.7 ( 8.8 )

𝜂𝑡 ≡ 𝜂𝑟𝑒𝑠𝑡 𝜂𝑡 ≡ {𝜂𝑟𝑒𝑠𝑡 , 𝜂𝑧𝑜𝑜𝑚𝑡 }

𝜂1 741.2 ( 45.7 ) 674.6 ( 49.3 ) 209.3 ( 52.5 )

𝜂2 658.4 ( 41.6 ) 601.4 ( 43.9 ) 181.2 ( 42.4 )

𝜂3 547.6 ( 36.7 ) 474.8 ( 40.8 ) 172.4 ( 38.5 )

𝜂4 467.9 ( 34.4 ) 397.5 ( 38.7 ) 168.0 ( 38.1 )

𝜂5 454.5 ( 28.0 ) 380.5 ( 32.8 ) 169.1 ( 35.3 )

𝜂6 391.3 ( 24.2 ) 329.1 ( 27.9 ) 166.5 ( 33.8 )

𝜂7 359.9 ( 20.7 ) 291.6 ( 26.0 ) 159.3 ( 32.6 )

𝜂8 314.2 ( 19.2 ) 246.5 ( 24.1 ) 170.7 ( 33.2 )

𝜂9 257.5 ( 14.8 ) 200.2 ( 19.1 ) 152.2 ( 29.3 )

𝜂10 234.3 ( 13.7 ) 181.7 ( 17.9 ) 145.7 ( 28.6 )

𝜂11 229.0 ( 11.6 ) 205.5 ( 14.3 ) 93.1 ( 26.1 )

𝜂12 239.0 ( 11.3 ) 212.4 ( 14.0 ) 100.2 ( 25.3 )

𝜂13 199.9 ( 10.3 ) 178.4 ( 12.8 ) 84.8 ( 23.4 )

𝜂14 176.9 ( 9.2 ) 161.4 ( 11.8 ) 68.8 ( 23.4 )

𝜌𝑟𝑒𝑠0 6.64 ( 0.041 ) 6.48 ( 0.0723 )

𝜌𝑟𝑒𝑠1 -0.11 ( 0.005 ) -0.11 ( 0.0085 )

𝜌𝑧𝑜𝑜𝑚0 5.48 ( 0.088 )

𝜌𝑧𝑜𝑜𝑚1 -0.07 ( 0.010 )
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Figure 3: Estimated and fitted cost of resolution and zoom

mean of each of these parameters follows an independent logarithmic time trend, so that they

tend to fall asymptotically towards zero:

𝑙𝑜𝑔(𝜂𝑟𝑒𝑠𝑡 ) = 𝜌𝑟𝑒𝑠0 + 𝜌𝑟𝑒𝑠1 𝑡+ 𝜇𝑟𝑒𝑠
𝑡

𝑙𝑜𝑔(𝜂𝑧𝑜𝑜𝑚𝑡 ) = 𝜌𝑧𝑜𝑜𝑚0 + 𝜌𝑧𝑜𝑜𝑚1 𝑡+ 𝜇𝑧𝑜𝑜𝑚
𝑡 (25)

where {𝜇𝑟𝑒𝑠
𝑡 , 𝜇𝑟𝑒𝑠

𝑡 } are non-persistent mean-zero errors. Estimates of {𝜌𝑟𝑒𝑠0 , 𝜌𝑟𝑒𝑠1 , 𝜌𝑧𝑜𝑜𝑚0 , 𝜌𝑧𝑜𝑜𝑚1 }
obtained from (25) are very precise, as seen at the bottom of Table 4. The estimated cost

parameters corresponding to the estimation with two observed characteristics are displayed

in figure 3, together with the fitted values obtained from (25).

It has been assumed that all firms share the same marginal production costs under the

understanding that camera components are traded openly in the market. Equation (19) could

have included firm effects to account for possible differences in the levels of marginal costs

across firms. There’s nothing in the data, though, that would allow the identification of

such effects separately from the brand effects on the demand side. Therefore, any systematic

differences in profitability across manufacturers are captured by the differences in demand, as

illustrated below.

4.2 Estimation of demand

Demand is estimated using an algorithm almost identical to the standard BLP algorithm.

The only difference is that the demand equation (6) accounts for a non-constant reservation

20



utility and a time-changing distribution of consumers’ attributes. For any set of demand

parameters, the vectors of unobserved product characteristics are solved period by period to

compute a GMM criterion function based on the moment conditions (10).

Specifically, a number of 𝑁 = 1000 draws of 𝜀𝑛 ∼ 𝑁(0, 1) are simulated. Set 𝜓𝑛1 = 1 for

all 𝑛 and set the demand parameters 𝜃0 = {𝛼̂, 𝜋0, 𝛾0, 𝜎0
𝛾}, where the price coefficient 𝛼 has

been replaced by its estimate obtained above. Given the equality of predicted and observed

demand (9), where the predicted demand is given by (8), the vector of implied mean utility

levels 𝛿0𝑡=1 ≡ {𝛿0𝑗∈ℑ1,𝑡=1} is obtained numerically using the fixed point algorithm proposed in

BLP:

𝛿′𝑡 = 𝛿𝑜𝑡 + 𝑙𝑜𝑔(𝑄𝑡/𝑀𝑡)− 𝑙𝑜𝑔(𝑞𝑡/𝑀𝑡) (26)

The appendix contains a description of the conditions under which this mapping is a con-

traction and its fixed point unique. As discussed below, these conditions are met in all but

one of the estimated specifications of the model. The computation of the implied unobserved

product attributes is straightforward from the definition of the mean utilities:

𝜉𝑢0𝑡=1(𝜃0) = 𝛿0𝑡=1 − 𝛾0 −𝐷𝐵𝑗𝛾
𝐵 − 𝑥𝑟𝑒𝑠

𝑡=1𝛾
𝑟𝑒𝑠 − 𝑥𝑧𝑜𝑜𝑚

𝑡=1 𝛾𝑧𝑜𝑜𝑚 + 𝑝𝑡=1𝛼̂ (27)

where 𝑥𝑟𝑒𝑠
𝑡=1 ≡ {𝑥𝑟𝑒𝑠

𝑗∈ℑ1
}, 𝑥𝑧𝑜𝑜𝑚

𝑡=1 ≡ {𝑥𝑧𝑜𝑜𝑚
𝑗∈ℑ1

} and 𝑝𝑡=1 ≡ {𝑝𝑗∈ℑ1}.
To obtain 𝜉𝑡>1(𝜃0), the participation probabilities ℎ𝑛𝑡 associated with each draw 𝜀𝑛 are

computed to get the survival probabilities 𝜓𝑛𝑡+1 = 𝜓𝑛𝑡(1−ℎ𝑛𝑡) for each simulated consumer.

Then, the vector of mean utilities and the associated unobserved product attributes can be

computed in the same way as in 𝑡 = 1. This procedure is repeated for every 𝑡 until 𝑡 = 𝑇 .

With the unobserved product attributes at hand, matrices of instruments 𝑍𝑡 are used to

compute the sample analog of the vector of moment conditions (10) for each 𝑡:

𝑚̃𝑡(𝜃
0) = 𝜉𝑢𝑡 (𝜃

0)′𝑍𝑡 (28)

The estimation algorithm looks for the set of parameters 𝜃 that minimizes a GMM metric:

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑚̃(𝜃)′𝑚̃(𝜃)} (29)

where 𝑚̃ is a vector of vertically stacked moment conditions 𝑚̃𝑡. The instruments used

to estimate the model include vectors of ones and the observed characteristics of available

products at any point in time, which as usual are assumed to be uncorrelated with the

unobserved attributes.

21



Table 5: Preference estimates(standard errors in parenthesis)

I: Constant coefficients II: Random coefficients

𝜋1 0 0 0.43 (0.15) 0.33 (0.09)

𝜋2 -0.37 (0.04) -0.31 (0.03) -0.60 (0.15) -0.78 (0.13)

𝜋3 0 0 -0.83 (0.23) -0.49 (0.16)

𝛾1 3.04 (0.13) 3.24 (0.18) 3.13 (0.12) 3.03 (0.19)

𝛾0 -10.20 (7.798) 64.64 (30.4) -23.11 (4.6) -22.19 (6.73)

𝛾2 - 2.25 (0.17) 2.24 (0.17)

𝜎𝑥 0 0 0.07 (0.025) 0.22 (0.03)

III: Random coefficients (restricted) IV: Static model (BLP)

𝜋1 0.08 (0.03) 0.13 (0.05) 0 0

𝜋2 -0.36 (0.04) -0.30 (0.02) -1 -1

𝜋3 0 0 0 0

𝛾1 3.09 (0.13) 3.24 (0.15) 2.56 (0.10) 2.58 (0.15)

𝛾0 -11.09 (3.11) -11.28 (3.16) -12.33 (0.12) -12.18 (0.13)

𝛾2 - 2.25 (0.18) - 2.20 (0.18)

𝜎𝑥 0.01 (0.00) 0.05 (0.01) 0.00 (0.00) 0.00 (0.00)
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Estimates of {𝜋, 𝛾, 𝜎𝛾} were obtained following the described procedure and are shown on
Table 5. The displayed standard errors were obtained bootstrapping the random components

of the model. The initial market size was set to 100 million which was the approximate number

of U.S. households and then was adjusted period by period according to observed sales. The

parameter 𝜋0 is not separately identified from the constant 𝛾0 of the utility function and was

therefore normalized to zero9. Eight versions of the model were estimated –four specifications

(I, II, III and IV) each with one observed characteristic (resolution) and two characteristics

(resolution and optical zoom) as follows:

∙ Models I have no random taste coefficients. Therefore, 𝜎𝛾 = 0, 𝜋1 = 0 and 𝜋3 = 0.

∙ Models II correspond to the full model. As shown in the appendix, depending on the
draws of 𝜀𝑛 the mapping (26) may not be a contraction and therefore the algorithm

failed to find a solution to the model for some parameter values.

∙ Models III are a restricted specification with 𝜋3 = 0 that satisfies the sufficient conditions

for (26) to be a contraction with a unique fixed point.

∙ Models IV are equivalent to the standard BLP estimation, which is a particular case of
the model with 𝜋1 = 0, 𝜋2 = −1 and 𝜋3 = 0.

Estimates of the taste coefficients are positive and reasonable. The estimates of the pa-

rameters 𝜋, though non-structural, are illustrative of the response of consumer behavior to

changes in overall quality at the given equilibrium. Estimates 𝜋̂2 < 0 obtained from the dy-

namic models (I, II and III) imply that the participation function is positively correlated with

the average consumer’s valuation of “quality”, so that as the quality of cameras increases,

so does the probability of adoption. Nevertheless, when unobserved heterogeneity is incor-

porated (models II and III), the estimate 𝜋̂1 > 0 which implies that, given a set of available

products and prices, a higher than average taste for camera resolution has a negative effect

on the purchase probability.

To see how the model is able to reproduce the aggregate pattern of sales over time, figure

4 shows the series of observed aggregate camera sales over time and a band containing a 95%

interval of simulated camera sales. The band was obtained simulating the joint distribution of

9This normalization is equivalent to the usual normalization of the outside utility in discrete choice models.
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Figure 4: Observed market participation and 95% predicted interval

the unobserved components of the model with no random coefficients and two characteristics

(models I on Table 5, second column).

Now we discuss two salient features of the results. First, the contrast between the dynamic

specifications of the model (models I, II and III) and the “static” specification (models IV),

which allows the rejection of the standard “static” model. Second, the very low estimated

randomness of the taste coefficient, which will facilitate the computation of the model of

product introduction.

The first and most salient feature of the estimation is that they allow the rejection of

the standard BLP model in favor of the more general dynamic specifications. Specifically,

estimates of 𝜋 in models I, II and III allow the easy rejection of the hypothesis that 𝜋1 = 0,

𝜋2 = −1 and 𝜋3 = 0. This means that the participation behavior of consumers in this market

is consistent with a non-constant reservation utility. Moreover, the data is consistent with the

hypothesis that this reservation utility is tied to the changing quality of products.

In addition, estimates of 𝛾𝑟𝑒𝑠 obtained in I, II and III are significantly higher (both sta-

tistically and economically) than the estimates of 𝛾𝑟𝑒𝑠 obtained in IV. This bias is the result

of the underlying assumption of the standard BLP model that non-participating consumers

don’t value available products enough to buy them, whereas the truth may be that they may

be waiting for better products to become available in the future. Notice that price parame-

ters, which are identified from the pricing equation are the same across specifications, so that
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the differences in taste parameters reflect the essential difference between the static and the

dynamic model.

As discussed before, the improvement of CCD chips over time is constant and quite dra-

matic, as well as the fall in prices. As a consequence of such change, consumers have strong

incentives to delay the purchase of a digital camera. It is therefore no surprise that the static

model yields a lower preference for CCD resolution than the dynamic model. On the other

hand, notice that the estimate of the optical zoom coefficient doesn’t differ between the static

and dynamic versions of the model; it is also the case that the technology of lenses hasn’t

changed significantly over the last decade. Results are therefore consistent with the premise,

that a static specification of consumer behavior is a misleading approach in environments with

rapidly changing quality that imply nontrivial dynamic concerns for the consumers.

The second salient feature of the results is that the estimates of 𝜎𝛾 in models II, III and

IV are very low, which implies that there is little evidence of any economically significant

heterogeneity of the taste for camera resolution, which was the main measure of the quality

of an individual camera. In fact, the estimate of 𝜎𝛾 obtained from models IV (the BLP

specification) collapses literally to zero.

The reason why a model with random coefficients is generally better able to fit a panel of

sales data is that it takes advantage of the correlation of market shares of similar products

over time. In this case, the results indicate that the variation of the unobserved determinants

of choices in the data has a very low correlation with the resolution of the cameras.

Consequently, for the estimation of the model of product introduction below it will be

assumed that 𝜎𝛾 = 0. This implies that all consumers share the same inclusive value:

𝜎𝛾 = 0⇔ 𝑟𝑛𝑡 = 𝑟𝑡∀𝑛 (30)

Therefore, firms should only keep track of one inclusive value over time when computing

their expected evolution. Specifically, let the inclusive values evolve according to a first order

autoregressive process:

𝑟𝑡 = 𝜌𝑟0 + 𝜌𝑟1𝑟𝑡−1 + 𝜖𝑟𝑡 (31)

where 𝜖𝑟𝑡 is a non-persistent normal error, so that (31) can be estimated using OLS.

Table 6 contains the estimates of 𝜌𝑟 ≡ {𝜌𝑟0, 𝜌𝑟1} obtained from (31) using the two different

versions of models I. The estimates are precise an consistent with the upward trend of quality

and variety of camera models over time. Figure 5 displays computed and fitted values of 𝑟𝑡,
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Table 6: Estimates of 𝛾𝐵 and 𝜌𝑟

(standard errors in parenthesis)

𝑥𝑗 = {𝑥𝑟𝑒𝑠
𝑗 } 𝑥𝑗 = {𝑥𝑟𝑒𝑠

𝑗 , 𝑥𝑧𝑜𝑜𝑚
𝑗 }

𝜎𝛾 = 0 𝜎𝛾 = 0

agfa 0.50 ( 0.38 ) 0.38 ( 0.40 )

canon 2.98 ( 0.30 ) 3.40 ( 0.41 )

fuji -0.21 ( 0.42 ) -0.23 ( 0.33 )

hp 0.74 ( 0.26 ) 0.90 ( 0.45 )

kodak 1.36 ( 0.39 ) 1.05 ( 0.28 )

nikon 1.10 ( 0.26 ) 1.10 ( 0.42 )

olympus 2.52 ( 0.37 ) 2.43 ( 0.28 )

polaroid 4.54 ( 0.26 ) 5.21 ( 0.40 )

sony 5.08 ( 0.39 ) 4.06 ( 0.32 )

toshiba 0.34 ( 0.37 ) 0.29 ( 0.43 )

𝜌𝑟0 0.90 ( 0.27 ) 1.03 ( 0.27 )

𝜌𝑟1 0.97 ( 0.03 ) 0.96 ( 0.03 )
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Figure 5: Estimated and fitted 𝑟
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obtained from the model with two observed characteristics. Notice that the adopted transition

of 𝑟𝑡, which is very close to a random walk, is consistent with the Markovian assumption on

which the estimation of demand was based.

Table 6 also contains the estimates of the fixed brand-effects 𝛾𝐵 obtained from models I.

These effects capture the systematic variation of unobserved quality across brands. Effects

were included for the 10 top-selling brands and are measured with respect to the remaining

brands. These ten biggest firms comprise around 90% of the market during the time span

of the sample. Most of these effects are significantly different from zero. According to the

estimates, Sony and Polaroid have the highest brand attributes.

4.3 Computation of 𝑉 (.)

We can use the estimates obtained above to compute the expected profitability at the time

of introduction of any camera model. Consider the estimates obtained from models I for

which 𝜎𝛾 = 0 and use {𝜋̂, 𝛾, 𝛼̂, 𝜂} to compute the inclusive values as defined in (3). Then
replace these values in (20) to obtain the expected value of a camera model with observed

characteristics 𝑥𝑗 to be introduced by firm 𝐵𝑗 at time 𝜏 :

𝑉
𝐵𝑗
𝜏 (𝑥𝑗) =

𝐸𝑟𝑡,𝜂𝑡

⎡
⎣ 𝑇𝑗∑

𝑡=𝜏

𝛽𝑡−𝜏 1

𝛼̂
𝑀𝑡

[
𝑒
𝛾0+𝐷𝐵𝑗

𝛾𝐵+(𝛾𝑟𝑒𝑠−𝛼̂𝜂𝑟𝑒𝑠𝑡 )𝑥𝑟𝑒𝑠
𝑗 +(𝛾𝑧𝑜𝑜𝑚−𝛼̂𝜂𝑧𝑜𝑜𝑚𝑡 )𝑥𝑧𝑜𝑜𝑚

𝑗 −1

𝑒𝑟𝑡 + 𝑒𝜋̂2𝑟𝑡

]⎤⎦ (32)

where the expectations with respect to the evolution of 𝑟𝑡 and 𝜂𝑡 are computed using the

estimated distribution of {𝜌𝑟, 𝜌𝑧𝑜𝑜𝑚, 𝜌𝑟𝑒𝑠} obtained above from (25) and (31).

The function (32) can be computed up to the time 𝑇𝑗 at which the expected demand for

the product falls close enough to zero. In practice, the maximum lifetime of any product was

set to ten quarters, i.e. 𝑇𝑗 = 𝜏+10. This assumption has absolutely no effect on the results of

the model because ten quarters is much more than the commercial life of any camera model

in the sample. The quarterly discount rate was set at 0.97, and it was verified that results

were not very sensitive to other choices. Also, to reduce the dimension of the problem, it was

assumed that firms can perfectly anticipate the evolution of the total number of potential

buyers, since it didn’t have any significant effect on the results.

Figure 6 depicts the computed 𝑉 (.) as a function of 𝑥𝑗 = {𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑗, 𝑙𝑜𝑔(𝑧𝑜𝑜𝑚𝑗)} during
the second quarter of 2000. Notice that the function is increasing and convex, as a consequence
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Figure 6: Value of quality as a function of resolution and optical zoom

of the static demand functions being also convex on the characteristics space. For illustration

purposes, the fixed-brand effect was set equal to zero. To provide an idea of the order of

magnitude of this functions, this example indicates that a 2 megapixel average digital camera

to be introduced by a less-known brand in mid-2000 was expected to generate discounted

profits of 0.5 million dollars over the course of its commercial life, while a 3 megapixel camera

was expected to generate around 3 million dollars.

The function 𝑉 (.) is going to be used below for the estimation of the product introduction

costs. Despite the fact that the computation of (32) above is an easy computational task

for a given set of product characteristics, the estimation of the product introduction problem

(22) requires that we compute the function 𝑉 (.) and its derivatives repeatedly along the

estimation algorithm. To facilitate these computations, a parametric approximation of the

computed function 𝑉 (.) was obtained. The computed 𝑉 (.) is very smooth and could be

approximated well by an exponential polynomial:

𝑉
𝐵𝑗

𝑡 (𝑥𝑗) ≈ exp(𝜆𝐵
0𝑡 + 𝜆𝐵

1𝑡𝑥𝑗) (33)

Notice that the parameters are time- and brand-specific, since the function varies over time

and across brands. It will be assumed that firms cannot anticipate or choose the value of a

new product’s unobserved attribute so that they expect it to be zero, which is its assumed

mean. Estimates {𝜆̂𝐵
0𝑡=1,..., 𝜆̂

𝐵
1𝑡=1,...} are obtained by successively computing 𝑉 (.) over a grid
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of product characteristics and firms, and then using OLS on its logs. The estimates of the

approximation (not shown) are very precise, which is not surprising given the smoothness of

𝑉 (.).

4.4 Estimation of product introduction costs

Now we turn back to the estimation of the product introduction costs 𝐹 (.) given our approx-

imation of 𝑉 (.). As in standard empirical entry models, the maximum number of potential

product introductions per period is set exogenously by assuming a maximum number of intro-

ductions 𝐿𝐵
𝑡 that each firm 𝐵 can make at each period 𝑡. Even though the set of participating

firms is fixed, a firm can endogenously exit (and enter back) the market depending on the

success of its new product introductions. The model is estimated based on the behavior of

the ten biggest firms in the market during the last ten quarters of the sample, taking the

behavior of the remaining firms as given. It is assumed that the number of new products that

any firm can introduce into the market each period is eight, i.e. 𝐿𝐵
𝑡 = 𝐿 = 8. Eight is the

maximum number of camera models introduced by any firm in the same quarter at any point

during the time span of the sample.

Consider the problem of firms choosing only the resolution of the camera, so that 𝑥𝑗 ≡ 𝑥𝑟𝑒𝑠
𝑗 .

As indicated before, resolution was by far the most important quality indicator of individual

camera models during the time span of the sample. Let the fixed introduction costs be given

by the following flexible convex specification:

𝐹𝑡(𝑥𝑗 , 𝜉
𝐹0
𝑗 , 𝜉𝐹1

𝑗 ; 𝜁, 𝜎𝐹 ) = exp(𝜁𝑞 + 𝜁𝑉 𝑡+ 𝜎𝐹0𝜉
𝐹0
𝑗 )

+ exp(𝜁𝑥𝑥𝑗 + 𝜁𝐻𝑡+ 𝜎𝐹1𝜉
𝐹1
𝑗 ) (34)

where 𝜉𝐹𝑗 ≡ {𝜉𝐹0
𝑗 , 𝜉𝐹1

𝑗 } are standard normal unobserved errors that are associated with the two
choices of the firm, i.e. introduction and camera quality. The introduction costs depend on the

chosen observed quality 𝑥𝑗 of the camera, a time trend 𝑡 which captures the drift of the function

over time, and parameter vectors 𝜁 ≡ {𝜁𝑥, 𝜁𝑉 , 𝜁𝐻 , 𝜁𝑞1, 𝜁𝑞2, 𝜁𝑞3, 𝜁𝑞4} and 𝜎𝐹 ≡ {𝜎𝐹0, 𝜎𝐹1}.
There are two terms in 𝐹 (.): graphically, the first term indicates its position across the

vertical axis, while the second one determines its curvature and potential horizontal shift. The

first time trend parameter 𝜁𝑉 causes the function to drift vertically as time passes by. The

second time trend parameter 𝜁𝐻 shifts the function horizontally as time passes by. Parameter
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𝜁𝑞 ∈ {𝜁𝑞1, 𝜁𝑞2, 𝜁𝑞3, 𝜁𝑞4} is a fixed-quarter effect that approximates the specific seasonal concerns
that are not included explicitly in the model.

Each period 𝜏 , firm 𝐵 gets to “try” to introduce up to 𝐿 = 8 new camera models taking

𝑙 = 1, ..., 𝐿 independent draws of the standard normal errors 𝜉𝐹𝑙𝐵𝜏 ≡ {𝜉𝐹0
𝑙𝐵𝜏 , 𝜉

𝐹1
𝑙𝐵𝜏}. For each of

these binomial draws the firm can introduce one new product. Given the assumptions above,

each new product introduction is decided independently. Therefore, for each set 𝜉𝐹𝑙𝐵𝜏 of draws,

the optimal introduction decision is given by the solution to (23) and (24).

The model is estimated using a simulated method of moments as follows: Fix the vector

of parameters {𝜁0, 𝜎0
𝐹 }. For each of the ten biggest firms in the sample 𝐵 = 1, ..., 10 and

each period 𝜏 = 1, ..., 10, eight independent sets of errors 𝜉𝐹𝑙𝐵𝜏 are simulated (i.e. 𝑙 = 1, ...8).

For each set of random draws we can obtain the optimal resolution 𝑥∗
𝑙𝐵𝜏 of the new camera

models to be considered for introduction replacing (33) and (34) in (24):

𝜆̂𝐵
1𝜏 exp(𝜆̂

𝐵
0𝜏 + 𝜆̂𝐵

1𝜏𝑥
∗
𝑙𝐵𝜏 ) = 𝜁01 exp(𝜁

0
𝑥𝑥

∗
𝑙𝐵𝜏 + 𝜁0𝐻𝜏 + 𝜎0

𝐹1𝜉
𝐹1
𝑙𝐵𝜏 ) (35)

Given the optimal resolution 𝑥∗
𝑙𝐵𝜏 of the new camera model, the firm will introduce it iff its

net expected profitability is positive. The optimal introduction decision 𝕀
∗
𝑙 can be obtained

replacing 𝑥∗
𝑙𝐵𝜏 , (33) and (34) in (23):

𝕀
∗
𝑙𝐵𝜏 = 1⇔ exp(𝜆̂𝐵

0𝜏 + 𝜆̂𝐵
1𝜏𝑥

∗
𝑙𝐵𝜏 )

− exp(𝜁0𝑞 + 𝜁0𝑉 𝜏 + 𝜎0
𝐹0𝜉

𝐹0
𝑙𝐵𝜏 )− exp(𝜁0𝑥𝑥∗

𝑙𝐵𝜏 + 𝜁0𝐻𝜏 + 𝜎0
𝐹1𝜉

𝐹1
𝑙𝐵𝜏 ) > 0 (36)

Each simulation 𝑠 = 1, ..., 𝑆 yields optimal introduction decisions {𝕀∗𝑙𝐵𝜏 , 𝑥
∗
𝑙𝐵𝜏}𝑠 for 𝑙 =

1, ...8, 𝐵 = 1, ..., 10 and 𝜏 = 1, ..., 10. The simulation was repeated 𝑆 = 100 times to obtain

a number of predicted moment conditions. Specifically, we obtain average predictions of the

number of products introduced at each point in time and of the predicted inclusive values of

the demand function:

𝐾̄𝜏 (𝜁
0, 𝜎0

𝐹 ) =
1

𝑆

𝑆∑
𝑠=1

10∑
𝐵=1

10∑
𝑙=1

[𝕀∗𝑠𝑙𝐵𝜏 ] (37)

𝑟𝜏 (𝜁
0, 𝜎0

𝐹 ) =
1

𝑆

[
𝑆∑

𝑠=1

log
10∑

𝐵=1

10∑
𝑙=1

𝕀
∗𝑠
𝑙𝐵𝜏 exp

(
𝛿(𝑥∗𝑠

𝑙𝐵𝜏 )
)]

(38)

where

𝛿(𝑥∗𝑠
𝑙𝐵𝜏 ) = 𝜉𝑢𝑙𝐵𝜏 + 𝛾0 +𝐷𝐵𝑗𝛾

𝐵 + (𝛾𝑟𝑒𝑠 − 𝛼̂𝜂𝑟𝑒𝑠𝑡 )𝑥∗𝑠
𝑙𝐵𝜏 − 1
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Table 7: Introduction Cost Estimation

Parameter Estimate(s.e.) Estimate (s.e.)

𝜁𝑞1 15.8815 ( 0.20 ) 15.585 ( 0.48 )

𝜁𝑞2 17.2818 ( 0.30 ) 17.064 ( 0.63 )

𝜁𝑞3 15.6535 ( 0.23 ) 15.833 ( 0.49 )

𝜁𝑞4 17.7867 ( 0.41 ) 17.594 ( 0.70 )

𝜁𝑟𝑒𝑠 8.2197 ( 1.11 ) 11.499 ( 0.98 )

𝜁𝑉 0.024 ( 0.04 ) -0.171 ( 0.08 )

𝜁𝐻 -0.9626 ( 0.23 ) -1.062 ( 0.30 )

𝜎0 1.4957 ( 0.53 ) 2.036 ( 0.59 )

𝜎1 2.5798 ( 0.54 ) 2.562 ( 0.80 )

𝜁𝑐1 12154 ( 396.29 )

𝜁𝑐2 335 ( 40.19 )

The average of the predicted inclusive value across the 𝑆 simulations 𝑟𝜏 in (38) contains

random realizations of the unobserved product attributes 𝜉𝑢𝑙𝐵𝜏 drawn from its empirical dis-

tribution, estimated in section 4.2. 𝐾̄𝜏 is the predicted number of products introduced each

period 𝜏 , averaged across simulations.

The choice of these moments is not arbitrary. The consistency of the model requires that

the inclusive values predicted by the model 𝑟 ≡ {𝑟1, ..., 𝑟10} match the observed inclusive
values 𝑟 ≡ {𝑟1, ..., 𝑟10}. On the other hand, matching the predicted number of introductions
𝐾̄ ≡ {𝐾̄1, ..., 𝐾̄10} with its observed counterpart 𝐾 ≡ {𝐾1, ...,𝐾10} guarantees that, given
the inclusive values, the predicted quality of introduced products resembles the quality of

products that are introduced in the data.

The estimation algorithm looks for the sets of parameters that match predicted and ob-

served moments according to the following quadratic form:

𝑚𝑎𝑥{𝜁,𝜎𝐹 }
({𝑟(𝜁, 𝜎𝐹 )− 𝑟, 𝐾̄(𝜁, 𝜎𝐹 )−𝐾} ∗ {𝑟(𝜁, 𝜎𝐹 )− 𝑟, 𝐾̄(𝜁, 𝜎𝐹 )−𝐾}′) (39)

The standard errors of the estimates were obtained bootstrapping the random elements of the

model.

Results of the estimation are presented on the middle column of table 7. The parameter

estimates are precise and have the expected signs, with the exception of 𝜁𝑉 which is very close
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Figure 7: Predicted and observed inclusive value

to zero. The negative estimate of 𝜁𝐻 indicates that for any given resolution, introduction is

becoming cheaper over time and that the function is shifting to the right over time. More-

over, at any time introduction is more costly the higher the resolution of the model to be

introduced (i.e. 𝜁𝑟𝑒𝑠 > 0). This may occur because, at any point in time, higher resolutions

are technologically more complex and its adoption is therefore more expensive.

Estimates of 𝜁𝑞 indicate that there are significant seasonal differences in introduction costs.

Estimates indicate that introduction costs are higher during the summer and during the

Christmas season. These differences may be a reflection of seasonal increases in competition

for shelf space or in marketing costs. Finally, the simulated and observed moment conditions

are displayed in figures 7 and 8 to illustrate the ability of the model to replicate the rich

behavior observed in the data.

Notably, the model can be used to generate predicted paths for prices and market shares

of cameras with given quality. Figure 9 displays prices and market shares of a camera model

chosen arbitrarily. As illustrated in the figure, the model generates the inverse-U shaped

pattern of the market share that is observed in the data and that was documented in figure 2.

Prices, on the other hand, decline monotonically over time, which is also consistent with the

data as seen in figure 2. The figure corresponds to a camera with 1.1 megapixel introduced

in mid 1999, but the general pattern is the same across qualities and brands.

Notice that in the model pricing behavior has no built-in dynamic mechanism and is purely
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Figure 8: Predicted and observed number of introductions
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Figure 9: Predicted monthly prices and market shares after introduction
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the result of static profit maximization. The endogenous evolution of the market shares is

generated by the interaction of consumer’s dynamic behavior and the evolution of prices: in

early periods, the technology is too costly and therefore the prices are high. As the technology

of the camera becomes cheaper, so do prices and sales increase. At some point, though, the

decrease of its relative quality –compared with competing models –induces the monotonic

decrease of the market share of the given model.

The estimation has been based on the competitive assumptions detailed through the pre-

vious sections of the paper, which ruled out any strategic and/or cannibalization effects on

firms’ decisions. If these assumptions are not valid, product introduction decisions are not

independent of each other, both within and across firms, and estimates obtained from condi-

tions (35) and (36) may be incorrect. To test the potential significance of this correlation and

its impact on the estimation, a modified version of the model was estimated.

The correlation of the product introduction decisions and the market shares of individual

firms can be estimated by modifying (36) as follows:

𝕀
∗
𝑙𝐵𝜏 = 1⇔ exp(𝜆̂𝐵

0𝜏 + 𝜆̂𝐵
1𝜏𝑥

∗
𝑙𝐵𝜏 )− exp(𝜁0𝑞 + 𝜁0𝑉 𝜏 + 𝜎0

𝐹0𝜉
𝐹
0𝑙𝐵𝜏 )

− exp(𝜁0𝑥𝑥∗
𝑙𝐵𝜏 + 𝜁0𝐻𝜏 + 𝜎0

𝐹1𝜉
𝐹
𝑙𝐵𝜏 ) + 𝜁𝑐1𝑠𝐵𝜏 + 𝜁𝑐2𝑠

2
𝐵𝜏 > 0 (40)

where 𝑠𝐵𝜏 is the market share of firm 𝐵 at time 𝜏 . The parameters 𝜁𝑐1 and 𝜁𝑐2 capture any

statistical correlation between product introduction and the relative size of the firms which

would be inconsistent with the assumptions of the model.

Results of this modified estimation are displayed on the right column of table 7. Notice

that in general the estimated parameters of the introduction costs are similar to the ones

obtained from the model without firm-size effects. Accounting for these effects implies a bigger

coefficient of camera resolution and a significant downward shift over time of the introduction

costs. This negative effect is compensated by the additional costs associated with the size of

individual firms.

The estimates imply that there is a statistically significant negative effect of firm’s market

shares on their product introduction decisions. There is a positive second order effect which

implies that the effect is worse for larger firms. Nevertheless, the magnitude of the effect is

negligible. For a firm with a 35% market share –which is around the highest any firm in the

sample has at any point in time–the additional “costs” of product introduction implied by

their market shares are estimated to be around $4500, which is almost negligible compared
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with the estimated value of products.

These results suggest that the assumptions on which the estimation is based are adequate.

In the following section the estimated model without firm-size effects is used to characterize

the behavior of the model around the observed equilibrium and to illustrate the computation

of counterfactual equilibria.

4.5 Computation of counterfactual equilibria

The estimated model above allows the computation of counterfactual equilibria in a manner

that is consistent with a structural behavioral model. Computing the counterfactual be-

havior of the model is useful to understand its mechanics and illustrates the counterfactual

implications of the model.

Computing such equilibria is not trivial, though, due to the fact that behavior of firms is

determined crucially by their expectations regarding the evolution of overall market quality

and variety as indexed by the inclusive values 𝑟 ≡ {𝑟𝑡=1,...,𝑇}. The computed values of

product introduction 𝑉 (.) described in (32) are specific to the given dynamic equilibrium.

In any counterfactual equilibrium, the expected evolution of 𝑟 should be consistent with its

counterfactual intertemporal distribution.

The estimation is in fact based on a rational expectations assumption implying that ex-

pectations are consistent with observed behavior. The model implies that if firms expect the

inclusive value 𝑟𝑡 to increase slowly over time, the value of individual innovations is higher

and therefore incentives to introduce new products are higher; on the other hand, as all firms

introduce more and better products, they should expect 𝑟𝑡 to increase more rapidly over time.

In an equilibrium with rational expectations, though, expectations should coincide with the

observed behavior.

More precisely, given any observed sequence 𝑟0, and any assumed set 𝐴 of exogenous

assumptions, the estimated model generates a mapping Ψ of simulated 𝑟′:

𝑟′ = Ψ(𝑟0, 𝐴) (41)

In equilibrium, for the beliefs to be consistent we need 𝑟′ ≡ 𝑟0. For any given 𝐴′ ∕= 𝐴,

therefore, consistent beliefs can be found by computing the fixed point of 𝑟′ = Ψ(𝑟0, 𝐴′).

The computation of the fixed point above was done in the following way: given an initial

guess for 𝑟, we can compute its transition probability, which we can use to compute the value
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of product introduction for each firm, at each point in time and for any quality choice. These

computed values of 𝑉 (.) are then used to obtain the parametric approximation (33)–one for

every period and for every firm. With these parametric approximations at hand we simulate

200 times the behavior of firms under the counterfactual assumptions 𝐴′ to and obtain a new

predicted set of 𝑟′ by taking its average prediction across simulations. For each iteration along

the fixed point algorithm, these steps are repeated until convergence, which is assumed to be

reached as soon as the norm of (𝑟′ − 𝑟) is sufficiently small.

The value of the parameters of the model correspond to estimates obtained above as

follows:

∙ Cost and markup estimates from the left column on table 4.

∙ Preference estimates from the left column of model I on table 5 and the left column of

table 6.

∙ Introduction cost parameters from the left column on table 7.

∙ Set the starting values for 𝑟 equal to its values in the estimated equilibrium.

In other words, the computations are based on the model with only one observed product

characteristic and no unobserved persistent taste heterogeneity. The computations are based

on the behavior of ten biggest firms over the last ten quarters of the sample and take the

behavior of the smaller firms as given. They also take the dynamic behavior of consumers as

given by the reduced form approximation implied by the demand estimates.

Tables 8 and 9 report the number of new model introductions per quarter and its average

quality averaged across 200 simulations computed using the fixed point algorithm discussed

above. The baseline values correspond to a simulated version of the observed equilibrium

obtained from a first run of the algorithm under the observed conditions. Each other column

corresponds to a different experiment: in I and II, the number of participating firms is altered.

In III and IV, the introduction costs are changed across existing firms. Finally, in V and VI

the exogenous potential market size is changed. Each experiment and its results is discussed

below.

Notice that these experiments involve the variation of exogenous variables that don’t vary

in the data. The model identifies the effects of such variation in the following way: Given

that each firm has a limited number of products, the model can predict the effect of varying
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Table 8: Simulated number of introductions

Quarter Baseline I II III IV V VI

t=1 17.06 144.71 17.33 22.95 14.77 12.65 23.21

t=2 8.76 51.38 8.53 13.90 7.46 5.96 13.79

t=3 18.03 134.36 18.78 25.25 17.07 13.71 24.50

t=4 8.56 31.50 7.95 13.75 7.86 5.60 13.18

t=5 21.55 137.64 23.46 29.22 21.31 16.97 27.61

t=6 13.72 56.57 13.42 20.02 13.99 9.87 19.43

t=7 24.42 137.75 28.10 32.68 24.70 19.73 31.14

t=8 14.68 44.26 14.28 20.46 14.97 10.55 19.44

t=9 28.98 150.54 38.31 37.99 30.35 24.24 36.13

t=10 20.45 74.93 22.46 27.73 21.44 16.50 26.45

Table 9: Simulated average resolution

Quarter Baseline I II III IV V VI

t=1 2.10 2.00 2.08 2.04 2.13 2.07 2.14

t=2 2.20 2.07 2.18 2.15 2.23 2.17 2.25

t=3 2.33 2.20 2.31 2.26 2.35 2.30 2.36

t=4 2.41 2.25 2.39 2.34 2.44 2.38 2.45

t=5 2.55 2.39 2.54 2.47 2.57 2.53 2.58

t=6 2.65 2.46 2.63 2.57 2.68 2.62 2.68

t=7 2.78 2.59 2.78 2.69 2.81 2.76 2.80

t=8 2.87 2.65 2.87 2.78 2.91 2.86 2.90

t=9 3.01 2.79 3.03 2.91 3.05 3.01 3.03

t=10 3.12 2.87 3.14 3.01 3.15 3.12 3.13
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the number of firms (experiments I and II) through its effect on the potential number of

successful product introductions, which has direct implications on the value of later product

introductions.

Given the structure of the model, on the other hand, the observed variation in product

introduction across time and firms implies different introduction costs, which can therefore be

changed counterfactually (experiments III and IV). Finally, as time passes by and consumers

purchase cameras, the market size shrinks and affects directly the value of introduction, which

can be therefore evaluated counterfactually for different market sizes (experiments V and VI).

4.5.1 Changing the number of competing firms

Columns I and II in tables 8 and 9 display the number of counterfactual new product in-

troductions per period and the average camera resolution of the new products over the ten

last quarters of the sample, when 30 additional firms of two different types are added to the

market10. The two chosen types were Sony (column I) and Toshiba (column II) which are,

correspondingly, the firms with the highest and lowest unobserved brand-specific “quality” so

that the contrast is more evident11.

This experiment is equivalent to increasing the maximum number of product introductions

per period for two different firm-types. Such change induces two offsetting effects: one one

hand, the increased “competition” allows the introduction of more and better products. On

the other hand, it erodes the dynamic value of innovation, because firms expect to have lower

market shares.

By comparing the results of column I and column II in both tables, it can be seen that

the net effect of having more firms competing in the market depends heavily on the type of

the firms. As can be seen, the number of product introductions, compared to the observed

baseline only increases slightly when lower-type firms are added to the market, whereas it

increases dramatically when higher-type firms are added.

What happens is that low-type firms cannot successfully introduce new products. In this

sense, increased “competition” by average firms (i.e. similar to Toshiba) has no effect on the

observed performance of the market: new firms just have a lower rate of product introduction,

10Simulations were performed increasing gradually the number of competing firms and results are qualita-

tively equivalent.
11The unobserved brand-effect of Sony is 5.02 and Toshiba’s is 0.3, measured with respect to the average of

the smaller firms; in this sense, Toshiba is very much an “average” firm.
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or just fail to introduce any new products at all. On the other hand and as seen in table 9, the

average resolution of new cameras doesn’t change much with respect to the baseline when low-

type firms are added to the market (column II). Surprisingly, it is lower when more higher-type

firms are competing with each other (column I). The highest resolution (not shown) of new

cameras doesn’t change across simulated regimes, whereas the lowest resolution (not shown) is

lower when more high-quality firms are competing. The higher successful competition of high-

quality firms skews the distribution of quality of new camera models, because of the convexity

of introduction costs, which makes it less likely the introduction of new high quality camera

models than the introduction low quality camera models.

In sum, the counterfactual computation of the model suggests that competition, per se, has

no necessary effect on the performance of the market. As illustrated, the increased presence

of average competitors only causes average firms to be displaced from the market and to

have more difficulties introducing new products. On the other side, increased competition by

higher quality firms has a significative impact on product introduction and variety and causes

average quality to be actually lower, because increased competition decreases the value of

high-quality product introduction. Simulating a high number of high-quality firms has just

an illustrative meaning, in the sense that the exogenous “quality” of brands is the reflection

of the underlying scarcity of technological and managerial talents.

4.5.2 Changing market size and introduction costs

This section explores the counterfactual effects of changing the product introduction costs

and the market size. Columns III and IV in tables 8 and 9 contain the counterfactual effects

of changes in the fixed introduction costs. Column III corresponds to the experiment in

which introduction costs are halved across firms and across quality choices, while column

IV corresponds to the counterfactual doubling of introduction costs across firms and across

quality choices.

As can be seen, both in terms of the number of introductions and the average resolution

of cameras, the effects of a decrease in the introduction costs as seen in column III are more

significant than the effects of an increase of costs displayed in column IV.

When introduction costs decrease (column III), the number of new product introductions

increases so that the effective competition increases. The average quality of new cameras

decreases, due to the fact that more effective competition decreases the value of innovation
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and therefore more of the new cameras tend to have lower quality.

When the introduction costs are doubled (column IV), the number of introductions is lower

during the earlier periods. The average quality of cameras does not change much, because

the effective lower competition is offset by the increased introduction costs.

This asymmetry of the effects on the product introduction behavior of counterfactual

changes in introduction costs is due in part to the convexity of the introduction costs with

respect to the choice of camera resolution. It implies that introducing high quality cameras

becomes prohibitively expensive very rapidly as the quality increases. Therefore, when the

market is able to absorb more camera models, the distribution of their quality will tend to be

skewed towards lower quality cameras.

The effects of changes in total market size, on the other side, are more balanced. Column

V in tables 8 and 9 reports the effects of halving the total market size, and column VI reports

the effects of doubling the total market size. As expected, the number of introductions

increases when the market size is bigger, whereas it decreases when the market size is smaller.

Remarkably, average quality stays fairly constant across experiments. This is a reflection of

the offsetting impact of competition and innovation opportunities.

The described experiments illustrate the very complex relationship between market per-

formance and market structure implied by the model. Some of the results are surprising: for

example, the fact that increased presence of competitors doesn’t necessarily have any effect

on product variety or quality. Or the result that increased introduction costs lead to higher

average camera quality. The richness of the results highlight also the importance of addressing

the innovation behavior of firms accounting for the the specifics of the environment.

5 Conclusion

An empirical framework was developed to study product innovation and adoption in markets

for digital cameras. The framework was based on an equilibrium model of supply and demand

for durable goods that accounts for the dynamic incentives of both consumers and firms. Es-

timates were obtained of the value of products for firms and consumers accounting for the

dynamics of the environment. The model was not only able to reproduce the dramatic im-

provement in camera quality over the time span of the sample, but was also able to reproduce

the rich pattern of pricing and sales of individual products that is observed in the data.

40



Counterfactual computations illustrate the need for addressing the innovation behavior of

firms using an empirical technique that accounts for the structural complexities of the market.

For example, it is shown that increasing competition doesn’t necessarily increase the average

quality of introduced products. Or that increased market size or reduced innovation costs

do not necessarily lead to higher average quality, due to technological restrictions and the

perverse effects of increased competition on the value of innovation.

The paper contributes to the empirical literature on estimation of demand for differen-

tiated products by implementing a simple extension of the standard BLP technique that

incorporates both dynamics and unobserved consumer heterogeneity. It was found that per-

sistent unobserved heterogeneity was not significant and that consumers had strong dynamic

incentives to time optimally their purchases. Specifically, it was found that the standard BLP

specification was rejected by the data.

The main limitation of the estimated model is the lack of strategic interactions among

the firms on the supply side of the model. It was argued that this restriction was reasonable

in the case of the market for digital cameras, given the large number of models that each

firm produces and the very small estimated cross-product elasticities. In this sense, each

new product introduction can be taken ex-ante as marginal. We provided an informal test

of this notion by showing that individual product introduction decisions were very loosely

correlated with the firms’ overall market shares, after controlling for product characteristics

and its expected profitability.

This assumption was also convenient for practical reasons, given the unavailability of

techniques for estimating dynamic games of product innovation with such short panels as the

one used here. It must be added that there is no precedent in the literature of an empirical

structural model of dynamic product innovation and adoption. Moreover, the model illustrates

how a competitive model can reproduce the dramatic improvement in quality and decrease in

prices observed in the data. Future research should ascertain whether it is possible to identify

a richer model of firm competition from product-level data.
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Appendix I: Computation of the mean utilities

The computation of the mean utility levels is based on the solution for the fixed point of the

mapping (26), 𝑓(𝛿𝑡) = 𝛿𝑡 + 𝑙𝑜𝑔(𝑄𝑡/𝑀𝑡) − 𝑙𝑜𝑔(𝑞𝑡/𝑀𝑡), which is identical to the function (6.8)

in BLP except for the fact that demand 𝑞 is given by (6). The appendix in BLP spells out

three assumptions that (26) must satisfy in order to be a contraction with a unique interior

fixed point.

It is shown below that a sufficient condition for these assumptions to hold is that 0 ≤
∂𝑅𝑖𝑡/∂𝑟𝑖𝑡 < 1. This condition guarantees that 𝑓(.) is monotonic; if it doesn’t hold 𝑓(.)

may fail to converge, and the algorithm would be systematically ruling out points in the

parameter space. This restriction makes economic sense: it means that the reservation value

of a consumer should not be affected negatively or disproportionately by movements in the

current value of participating in the market.

From (6), predicted demand can be rewritten as follows:

𝑞𝑗𝑡(𝛿𝑡)

𝑀𝑡
=

∫
𝑃𝑟𝑖𝑗𝑡(𝛿𝑡, 𝜀𝑖)𝑑𝐺𝑡(𝜀𝑖)

where individual choice probabilities are given by:

𝑃𝑟𝑖𝑗𝑡 =

[
𝑒𝛿𝑗𝑡+𝑥𝑟𝑒𝑠

𝑗 𝜎𝛾𝜀𝑖−𝑅𝑖𝑡(𝑟𝑖𝑡(𝛿𝑡,𝜀𝑖))

1 + 𝑒𝑟𝑖𝑡(𝛿𝑡,𝜀𝑖)−𝑅𝑖𝑡(𝑟𝑖𝑡(𝛿𝑡,𝜀𝑖))

]

As in BLP, the derivatives of the function 𝑓(.) are given by:

∂𝑓𝑗𝑡/∂𝛿𝑗𝑡 = 1− 1

𝑞𝑗𝑡/𝑀𝑡

∂(𝑞𝑗𝑡/𝑀𝑡)

∂𝛿𝑗𝑡
= 1−

∫
(∂𝑃𝑟𝑖𝑗𝑡(𝛿𝑡, 𝜀𝑖)/∂𝛿𝑗𝑡)𝑑𝐺𝑡(𝜀𝑖)∫

𝑃𝑟𝑖𝑗𝑡(𝛿𝑡, 𝜀𝑖)𝑑𝐺𝑡(𝜀𝑖)

∂𝑓𝑗𝑡/∂𝛿𝑘𝑡 =
1

𝑞𝑗𝑡/𝑀𝑡

∂(𝑞𝑗𝑡/𝑀𝑡)

∂𝛿𝑘𝑡
=

∫
(∂𝑃𝑟𝑖𝑗𝑡(𝛿𝑡, 𝜀𝑖)/∂𝛿𝑘𝑡)𝑑𝐺𝑡(𝜀𝑖)∫

𝑃𝑟𝑖𝑗𝑡(𝛿𝑡, 𝜀𝑖)𝑑𝐺𝑡(𝜀𝑖)

The first assumption that 𝑓(.) must satisfy is the following set of conditions: ∂𝑓𝑗𝑡/∂𝛿𝑗𝑡 > 0

and ∂𝑓𝑗𝑡/∂𝛿𝑘𝑡 > 0 for all 𝑗, 𝑘 ∈ ℑ𝑡, and that
∑

𝑘∈ℑ𝑡
∂𝑓𝑗𝑡/∂𝛿𝑘𝑡 < (𝑞𝑗𝑡/𝑀𝑡) for all 𝑗 ∈ ℑ𝑡. Note

that these derivatives correspond to integrals over properties of individual choice probabilities.
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Therefore, it is sufficient to show that the conditions hold point by point as follows:

∂𝑃𝑖𝑗𝑡

∂𝛿𝑘𝑡
= −𝑃𝑖𝑗𝑡𝑃𝑖𝑘𝑡

(
1− ∂𝑅𝑖𝑡

∂𝑟𝑖𝑡

)
< 0

∂𝑃𝑟𝑖𝑗𝑡
∂𝛿𝑗𝑡

= 𝑃𝑟𝑖𝑗𝑡

(
1− ∂𝑅𝑖𝑡

∂𝑟𝑖𝑡

𝑒𝛿𝑗𝑡+𝑥𝑟𝑒𝑠
𝑗 𝜎𝛾𝜀𝑖

𝑒𝑟𝑖𝑡(𝛿𝑡,𝜀𝑖)

)
− 𝑃𝑟2𝑖𝑗𝑡

(
1− ∂𝑅𝑖𝑡

∂𝑟𝑖𝑡

)
< 𝑃𝑖𝑗𝑡

∑
𝑘∈ℑ𝑡

∂𝑃𝑟𝑖𝑗𝑡
∂𝛿𝑘𝑡

= 𝑃𝑟𝑖𝑗𝑡

(
1− ∂𝑅𝑖𝑡

∂𝑟𝑖𝑡

𝑒𝛿𝑗𝑡+𝑥𝑟𝑒𝑠
𝑗 𝜎𝛾𝜀𝑖

𝑒𝑟𝑖𝑡(𝛿𝑡,𝜀𝑖)

)
− 𝑃𝑟𝑖𝑗𝑡

(
1− ∂𝑅𝑖𝑡

∂𝑟𝑖𝑡

) ∑
𝑘∈ℑ𝑡

𝑃𝑟𝑖𝑘𝑡 < 𝑃𝑟𝑖𝑗𝑡

Since by definition 0 < 𝑒
𝛿𝑗𝑡+𝑥𝑟𝑒𝑠𝑗 𝜎𝛾𝜀𝑖

𝑒𝑟𝑖𝑡(𝜀𝑖)
< 1 for all realizations of 𝜀𝑖, it can be easily seen that

whenever 0 ≤ ∂𝑅𝑖𝑡/∂𝑟𝑖𝑡 < 1 the conditions above hold. Notice that in BLP ∂𝑅𝑖𝑡/∂𝑟𝑖𝑡 = 0

and therefore these conditions always always hold.

The second and third assumptions for 𝑓(.) to satisfy according to BLP guarantee that its

fixed point is interior. How these assumptions hold can be shown using an argument identical

as in BLP.

The second assumption is that 𝑓(.) has a finite lower bound. To show this, rewrite 𝑓(.) as

follows:

𝑓(𝛿𝑡) = 𝑙𝑜𝑔(𝑄𝑡/𝑀𝑡)− 𝑙𝑜𝑔

∫
𝑒𝑥

𝑟𝑒𝑠
𝑗 𝜎𝛾𝜀𝑖−𝑅𝑖𝑡(𝑟𝑖𝑡(𝛿𝑡,𝜀𝑖))

1 + 𝑒𝑟𝑖𝑡(𝛿𝑡,𝜀𝑖)−𝑅𝑖𝑡(𝑟𝑖𝑡(𝛿𝑡,𝜀𝑖))
𝑑𝐺𝑡(𝜀𝑖)

Note that as 𝛿𝑡 → −∞, 𝑟𝑖𝑡 → ∞ and, by definition, 𝑅𝑖𝑡 → 0. Therefore, as 𝛿𝑡 → −∞,
𝑓(𝛿𝑡)→ 𝑙𝑜𝑔(𝑄𝑡/𝑀𝑡)− 𝑙𝑜𝑔

∫
𝑒𝑥

𝑟𝑒𝑠
𝑗 𝜎𝛾𝜀𝑖𝑑𝐺𝑡(𝜀𝑖).

The third assumption is that 𝑓(.) is bounded away from ∞. Specifically, we show that
there exists a value 𝛿, such that if any element in 𝛿𝑡 is greater that 𝛿, then there is some

𝑘 ∈ ℑ𝑡 such that 𝑞𝑘𝑡(𝛿)/𝑀𝑡 > 𝑄𝑘𝑡/𝑀𝑡 and 𝑓(𝛿𝑘𝑡) < 𝛿𝑘𝑡. For each 𝑗 ∈ ℑ𝑡 find the value 𝛿𝑗

that makes the share of the outside option equal to its observed value assuming that 𝑗 is the

only product in the market, and set 𝛿 = 𝑚𝑎𝑥𝑘∈ℑ𝑡𝛿𝑗 . Notice that if there is an element in 𝛿𝑡

that is above 𝛿 then it must be that
∑

𝑘 𝑞𝑘𝑡 >
∑

𝑘 𝑄𝑘𝑡 and for some 𝑘 ∈ ℑ𝑡 𝑞𝑘𝑡 > 𝑄𝑘𝑡therefore

𝑓𝑘(𝛿𝑡) < 𝛿𝑘.

Four specifications of the model were estimated (labelled models I, II, III and IV). Models

I, III and IV satisfy the restriction that 0 ≤ ∂𝑅𝑖𝑡/∂𝑟𝑖𝑡 < 1. In models IV, this restriction may

be violated for particular realizations of 𝜀𝑖 and sometimes lead to non-convergence of (26).
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