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Chapter 1

Introduction

Nowadays, businesses based on software systems experiment diverse changes in their requirements of
operation. Continuous changes in customer preferences and technology are affecting the business
objectives, forcing the organizations to make decisions over the company’s present and future.
The organizations that have survived to this phenomenon are known as emergent organizations.
However, along with these organizations, the software systems whose purpose was to support the
organization’s stability is now required to be flexible enough to support the changes and therefore,
to be able to adapt in order to meet the new business goals [28].

For computing systems, the context is unpredictable, organizations are forced to change contin-
ually the business goals and therefore the software systems must meet those requirements in short
times. Under these conditions, it is nearly impossible for software engineers to design an error
free system. Therefore, engineers should also monitor and analyze the system every time searching
for possible faults. Subsequently, most of the IT budget is spent in prevention and recovery from
failures [6].

As a result, organizations need a cost benefit improved solution for the management of these
complex systems and then release its administrators of this managing and routine tasks as far as
possible. It is necessary to build systems that can be more self-manageable. In order to do that,
the systems must have characteristics stated as follows [6]:

• The system needs to know itself, therefore, the components in the system must have an
identity.

• The system must know the context surrounding its activity.

• The system must coexist with foreign components, that is, operating with open standards.

• The system should know its purpose and the business goals that it is pursuing.

As new business objectives change in organizations, software systems must be able to meet
them by adapting some part of itself. For this adaptation to be performed by the system itself,
it is required the execution of four tasks: monitoring the new business requirements, as the
internal and the external context, analyzing the data gathered to identify symptoms and need for
adaptation, planning a set of adaptive actions, and executing those actions over the system in
execution [16, 6, 14, 3].

One of the most important challenges in self-adaptation is to create the ability in the system to
reason about itself and its context. Control engineering uses feedback to measure and act upon the
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behavior of the system. Moreover, feedback loops become important in the process that the system
must follow to monitor and analyze a desired property of the system and then evaluate if it is being
reached [11]. Software engineers have made significant efforts to propose self-adaptive systems.
These proposals have used different approaches based on feedback loops, components and even
hybrid architectures, and communication standards [12, 15, 11, 16, 7, 20, 21, 30, 29, 27]. However,
all these approaches are not sufficient to fit the different systems, data types, and configurations that
are available to build self-adaptive software systems. Often, these proposals merge self-adaptation
with the target system making very difficult to analyze the adaptation capability as an independent
function, and feedback loops are not explicit in most of these proposals [15, 11, 16, 7, 20, 21]. In
this scenario, a reference architecture for designing self-adaptive software based on feedback loops
is a necessity.

The separation of concerns between the adaptation controller and the target system is important
to be able to manage their own properties and analyze and assess them separately. Not observing
this separation of concerns it is very difficult to identify and analyze the adaptation mechanism as
an independent functionality. Moreover, the less visible feedback loops managing the adaptation
in a system, the more difficult to implement the self-adaptation [18].

In this project we design a component-based architecture to implement the basic elements
required for self-adaptation: monitoring, analyzing, planning and executing, independently from the
system that is being adapted. Moreover, the components of this architecture can be distributed
among different machines providing flexibility and extensibility. Our architecture will provide
extensible capabilities in such a way it can be extended to be implemented as in e.g., the Service-
Oriented paradigm. To evaluate our proposal, we implement the architecture and evaluate it in an
specific case of study.

1.1 Project Goals and Objectives

1.1.1 General Objective

To design and implement a component-based reference architecture that defines the four basic tasks
required for self-adaptation: Monitor, Analyzer, Planner and Executor including the Sensors and
Effectors required to adapt component-based software systems.

1.1.2 Specific Objectives

1. To design a component-based reference architecture with distribution and extensible capabili-
ties for self-adaptive systems according to the reference model for context-based self-adaptive
systems [30]

2. To implement the proposed architecture as a Java software application.

3. To evaluate the proposal in a specific case of study using the service-oriented paradigm.

1.2 Document overview

The remainder chapters of this document are organized as follow: Chapter 2 describes the context
and background of this project. This chapter also gives a brief overview of Autonomic Computing
and Self-Adaptive Software Systems approaches as well as the methodology to derive a reference
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architecture, and the definition of a Component-Based Software. Chapter 3 presents the contribu-
tion of this project, the Reference Architecture for Component-Based Self-Adaptive Systems. This
chapter describes also the architectural patterns applied, the data flow amongst the components
and a description of each component intervening in each step in the adaptation process of a software
system. Chapter 4 presents the evaluation of this proposal in an specific case of study using a story
board proposed by Tamura et al [24] by using SoapUI. Finally, Chapter 5 presents the conclusions
and a proposal for future work.

4



Chapter 2

Context and Background

As mentioned in Chapter 1, the separation of concerns is important to facilitate the management of
adaptation as a software system independently the self-adaptive software system. To understand the
relevance of this proposal it is important to define the ground basis for the main concepts involved in
this project: Autonomic computing, Self-Adaptive Systems, Component-Based Software, Software
Architecture, Reference Models and Reference Architectures.

2.1 Autonomic Computing

An autonomic system is a system that can manage itself given some kind of decision making mech-
anism, such as policies, from administrators [14]. An autonomic system is composed of many
self-managed components that interact with each other autonomously. The relationship among
these components must be controlled by themselves and with minimum human interaction. Fur-
thermore, an autonomic system must be able to maintain and adjust their operations according to
changing external or internal conditions, and guarantee the alignment with the business goals.

The fundamental characteristic of an autonomic system, is self-management, in other words,
the capability to run routine tasks and maintenance without the intervention of the system ad-
ministrator. The system must be continuously monitoring itself to be aware of changes in the
system that might require either reconfiguration or optimization of the components, protecting
itself against suspected wrong behavior or recovering from failures [14]. In order to accomplish this
self-managing behavior, systems must implement four fundamental features: self-configuring, the
ability to adapt to the shifting environment itself in accordance with high-level policies aligned to
the business goals given by system administrators; self-healing, the ability to recover itself after
a disruption in the system and minimize outages to keep the software system up and available;
self-protecting, the capacity to predict, detect, recognize and protect itself against malicious at-
tacks and unplanned cascading failures; and self-optimizing, as the way the system improves its
operations [6, 14].

2.2 Software Adaptation

Adaptation refers to the capability of changing the software structure or behavior according to sig-
nificant alterations in the environment. This adaptation must occur dynamically and at runtime.
The adaptive behavior can be seen for instance on mobile devices, which must adapt to different
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connectivity conditions but keeping quality attributes such as availability and performance. Fur-
thermore, this adaptive capability is necessary on the systems that are vital to survive to hardware
failures and security attacks [16].

Self-Adaptive Software systems rely completely on the context which can be defined as any
information that characterizes the state of entities that affect the execution, maintenance and
evolution of systems[29].. Therefore, the desired software adaptation requires the system to be
context-aware because in the context are the changes and behavioral information related to the
decision and need of adaptation of the system, and because after adaptation occurs the context, as
the system itself, has changed.

Software adaptation can be implemented either by parameter or by composition, among oth-
ers. Parameter adaptation alters software model variables determining for the system behavior.
However, it does not allow new components or algorithms to be added after deployment. On the
other hand, compositional adaptation exchange algorithms or components with other elements in
the system to meet the current environment conditions [16].

Dynamic adaptation provides flexibility to the system because it can adjust itself at runtime.
However, this flexibility is very difficult to design and program for software engineers. McKinley
et al. include three requirements to implement reconfigurable software: separation of concerns,
computational reflection and component-based design [5, 16].

• Separation of concerns refers to the separation in development of an application’s func-
tional behavior from the non-functional requirements. It simplifies development and mainte-
nance and promotes the reuse software components.

• Computational reflection refers to the software’s ability to reason about its own structure
and possibly to alter it. Reflection implies two capabilities: introspection that allows a system
to observe its own structure, and intercession that allows the system to modify itself.

• Component-based design relates to the software units that are developed, deployed and
composed by third parties independently. This technique supports two types of composition:
static, where many components are combined to produce an application, and dynamic, where
components can be manipulated during runtime. Despite the techniques named before, it is
important to know the how, when and where, composition takes place in order to design a
proper adaptive solution [16].

2.3 Self-Adaptive Software System Approaches

This subsection highlights some approaches related to self-adaptive software systems based on
feedback loops, components, and even hybrid architectures, and communication standards that
ground some of the structural and behavioral basis of this proposal.

2.3.1 Kramer and Magee’s Three Layer Architecture

Kramer and Magee proposed a three level architectural model for self-managed systems [15]. The
three layers are: Component control, Change Management and Goal Management (See Figure 2.1).

• Component Control
This layer is responsible for the interconnection among components to accomplish the function
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of the system. It facilitates the information about the status of the components. Furthermore,
in this layer is where occurs the deployment, undeployment and interconnection of the system
components.

• Change Management
The second layer in this model is responsible for the execution of plans, that is, the actions
to address context changes that violate the satisfaction of system requirements. The ac-
tions taken in this layer might include the introduction of new components, changes in the
interconnection or even in the operational parameters.

• Goal Management
At the highest level, the plans needed from the layer below are produced. Also, in this layer
the introduction of new goals take place. These new goals are being introduced in the system
in consequence of the changing environment that could require a different behavior of the
system to achieve its goals or even changing the goals themselves.

Figure 2.1: Three Layer Architecture Model for Self-management [15]

2.3.2 Autonomic Computing Reference Architecture (ACRA)

IBM proposed an architectural blueprint for autonomic computing [12]. According to this proposal,
the management of a system involves four common activities: collect information, analyze it to
determine actions that need to be taken, create a plan with those actions, and finally, execute the
plan. In light of this, for the system to manage itself this process, the following conditions must
exist:

• The management tasks known as: configuring, healing, optimizing and protecting, must be
automated.

• These processes must be possibly initialized based on situations observed in the context.

• The system must possess enough knowledge to perform the automated tasks.

7



The IBM’s proposal presents a five layer scheme, shown in Figure 2.2, to control self-management
systems. However, the most relevant aspects in this proposal for our project are in layers 2 and 3
[12]:

• Level 2 - Touchpoints
These are the components responsible to interact with the managed resources. The interaction
refers to the awareness of the state and management of the resource trough two components:
sensor and effector. The sensor is in charge of knowing the state of the resource either by
acknowledging the properties and looking for changes, or by the events triggered over the
changes in the resource. Meanwhile, the effector is in charge to notify changes over the
resource either by the properties or by operations that are implemented in the managed
element.

• Level 3 - Touchpoint autonomic managers
These components implement the intelligent control loop over the managed resources, ar-
ranged typically in four scopes: single resource, homogeneous, heterogeneous and business
system.

This control loop is also known as the MAPE-K-loop: Monitor, Analyzer, Planner, and
Executer (See Figure 2.3). These four parts communicate and collaborate to each other and
exchange appropriate knowledge and information. The Monitor collects the information from
the managed resources. The Analyzer observes the reported situation, and determines if any
change needs to be made. The Planner creates the plan to achieve the changes, and the
Executer provides the mechanism to perform the changes over the managed system.

The common part of the MAPE-K loop, is the knowledge source, which is shared data among
the autonomic managers in the system. In order to do that, the knowledge must by expressed
using common syntax and semantic to the system. There are at least three ways to specify
knowledge: through policies, activities inside the autonomic system or actions inside the
autonomic control loop.

2.3.3 Feedback Control Loops

As mentioned previously, self-adaptive systems decide autonomously about the changes the system
needs to perform. In order to take those decisions, the system must be aware of the context and
of itself. Hence, the system must know the output of its actions and use them as feedback to take
the correct decision to be made [17]. Control theory is about knowing the characteristics of the
system. It deals with understanding how the desired input is affected by disturbance and noise
reflected over the measured output. In computing systems, even though control theory is necessary
to ensure that systems have desired output characteristics all over its operation it is very difficult
to apply it mainly because computing systems are non-linear in general [11].

Figure 2.4 shows a SISO1 feedback control system, whose elements are described as follow [11]:

• Reference input : This is the desired control objectives to be achieved. It is a reference used
by the control system to check if the objectives are being reached.

1SISO: Single-Input, Single-Output
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Figure 2.2: Autonomic computing reference architecture (ACRA) [12]

• Control error : The result of the comparison between measured output and the reference
input. In other words, it expresses how differs the system from the desired goal.

• Target System: The system to be controlled.

• Controller : This element is responsible for computing the control input for the target system
to achieve the reference input.

• Control input : The information dynamically produced by the controller to affect the behavior
of the target system.

• Disturbance and Noise: These two elements correspond to context sources. Disturbance is
any changes in the external environment that affect the target system. Noise is any effect
inside the target system that affects the measured outputs.

• Measured Output : The measurements being monitored in the Target System.

• Transducer : This is an optional element. Transducers transform the measured output to the
measurement units of the reference input, so they can be compared.

Feedback loops are important for this project because they provide the generic mechanism
required for self-adaptation. Feedback loops are important in software processes to manage and
support software evolution [18]. The generic feedback loop (Figure 2.4) represents the four main
activities required for self-adaptation: First the monitor probes collect the relevant data through
sensors to reflect the current state of the system. Second, the analyzer element analyzes the
collected data and searches for symptoms about the desired behavior and the current state. Third,
the planner element decides whether it is necessary to adapt the system to reach the control
objectives. And last, the executor element instruments the adaptation actions through effectors
[9]. The steps in the feedback loop cycle are very similar to the tasks of autonomic computing.

9



Figure 2.3: Functional arrangements of the Autonomic manager (ACRA) [12]

Figure 2.4: SISO Feedback control block diagram with explicit functional elements and corresponding in-
teractions to control dynamic adaptation in a software system [30]

The main reason to implement feedback loops into computing systems is to reduce the effects
of uncertainty that appear in different forms as a consequence of the shifting context and the
changes in business goals. Therefore, it is necessary to make explicit feedback loops in the design of
autonomic systems in order to reason about its behavior and to analyze the adaptation mechanism
separately from the target system operation.

2.3.4 DYNAMICO: A Reference Model for Context-Based Self-Adaptation

Undoubtedly, in order to implement adaptation through feedback loops it is necessary to make
explicit the management of self-adaptive properties as the control reference goals, and the separation
of concerns by using different feedback loops to achieve the reference goals [30].

The reference model for context-based self-adaptation by Villegas et al. illustrated in Fig-
ure 2.5 is based on the SISO feedback control (Figure 2.4) with explicit functional elements and
corresponding interactions to control dynamic adaptation. These are the MAPE-K2 loop elements.

2MAPE-K: Monitor, Analyzer, Planner, Executor and Knowledge Base [12]
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The separation of concerns is a key aspect in this model, which defines three subsystems to
achieve self-adaptation [30]:

1. Control objective manager: Manages the target system’s purpose in terms of its control
objectives, according to the policies given by administrators. These control objectives can
change at runtime according to user-level negotiations. However, this management implies to
express quality attributes quantitatively and have them updated at runtime.

2. Context manager: Responsible for maintaining the pertinence and relevance of the context
monitoring infrastructure with respect to the target system under changing conditions of
execution. In order to do that, the context manager must be able to decide about the facts,
past, present and future states of the context variables of interest.

3. Adaptation mechanism: Responsible for the adaptive actions over the target system according
to the evaluation of its behavior. That means, to guarantee the accomplishment of the target
system’s purpose to satisfy its quality attributes.

Of particular importance in this reference model are the interactions between the three loops.
Even though they are designed independently they require to operate together to achieve the system
objectives.

2.4 Component-Based Software Engineering

As defined by Councill et al, a software component is a software element that can be independently
deployed and composed in any other model according to a standard composition. The difference
between a software component and any other software element is the use given by components in
the matter of quality features [10]. Moreover, software components hide all the complexity of the
software implementation by only exposing the services that the component requires and provides
through its interfaces. This property allows to assemble software pieces depending only on the
services and not depending on the inside implementation, the number of classes, the programming
language. This easy way of assembling components allows software engineers to reuse, modify
or even extend software without the difficulty of development maintenance because as software
components are independent from each other, they can be easily replaced [23].

For this proposal, a separation between the adaptation mechanism and the software system is
required in order to analyze and maintain each system as its own. Component-based software allow
separation but also connection among components through interfaces. Also, a component-based
design will provide flexibility and extensibility and the possibility of operation between software
systems running on different platforms and written possibly in different programming languages.

2.5 Software Architecture, Reference Models and Reference Architectures

According to Len Bass et al. an architecture in software defines the elements that compose the
system and the relationship between those elements, and it hides the information that is not relevant
for the interaction among them [1]. The individual behavior of each element is an important part
of the architecture which allows the appropriate communication between them.

The design of a reference architecture follows different stages where each stage represent archi-
tectural decisions and architectural binding choices. Figure 2.6 shows the relationship among the
design elements needed to build a reference architecture.
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Figure 2.5: Reference model for context-based self-adaptive systems [30]

2.5.1 Reference Model

A reference model represents the decomposition of a well known type of problem in several parts
that work together to solve the problem. This decomposition is standard in certain knowledge
area and it clearly specifies the parts and the functions inside the model [1]. Feedback loops, for
instance, is a reference model in control theory, and the 7-layers OSI is the reference model for
communication systems.

2.5.2 Architectural Patterns and Architectural Styles

An architectural pattern is described as a set of elements in component types and the relationships
among them. Moreover, it exhibits known quality attributes such as performance, security or
availability. A set of architectural patterns is known as an architectural style. As an addition, an
architectural style also defines a pattern for the runtime control and data transfer of the component
types but is not an architecture [1] . The main difference between an architectural style and a
reference model, is that the second one is well-known and accepted by a community.
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Figure 2.6: Reference Architecture derivation relationship between reference model, architectural patterns,
reference architectures, and software architectures. (The arrows indicates that subsequent concepts contains
more design elements)[1]

David Garlan and Mary Shaw considered a number of common architectural styles used in many
systems and the combinations of those in a single design [8], some of those architectural styles are
necessary to design the reference architecture for this case of study and it will be described in
Chapter 3.

2.5.3 Reference Architecture

A reference architecture is a mapping between a reference model and a set of software elements
with the data flows among them. Each element in the reference architecture implements totally or
partially a function previously identified in the reference model[1].

Chapter 3 details the reference architecture for self-adaptive systems proposed in this work.
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Chapter 3

A Reference Architecture for Component-Based
Self-Adaptive Software Systems

As mentioned in Chapter 2, a reference architecture is the result of the mapping between a reference
model and the software elements of a given design and corresponding data flow. This chapter
presents our reference architecture for designing and implementing component-based self-adaptive
software systems. We explain how components of this architecture are built and the role of each
component in this architecture and explain the data flow required to connect the components in
this architecture.

3.1 A Reference Model for Context-Driven Self-Adaptation

The case of study of this project is based on the running example presented by Tamura et al.
[24] called the Reliable videoconference System (RVCS). In summary, this RVCS is a self-adaptive
software system with a server that hosts videoconferences and mobile users which register and
attend the conferences.

In this scenario two software elements interact: an end-user application in a mobile device and
a server application. Figure 3.1 shows the main three functionalities of the system to be modeled:
(1) the end-user application allows the user to register in the videoconference system, (2) the
application allows the user attend to a particular videoconference in execution, and (3) a server
application in the videoconference system establishes the service conditions, also known as SLO1,
with the end-user application. The end-user application itself also establishes the conditions with
the server, that is why the arrow is bi-directional.

It is worth nothing in this scenario that both applications (end-user and server) must perform
a set of activities to ensure the proper behavior of the entire system, that means the need of imple-
menting self-adaptation. The IBM’s proposal for adaptive systems includes an intelligent control
loop[12]. This control loop is also known as the MAPE-loop: Monitor, Analyzer, Planner, and
Executer. These four parts communicate and collaborate to each other and exchange appropriate
knowledge and information. The Monitor collects the information from the managed resources.
The Analyzer observes the reported situation, and determines if an adaptation is required. The
Planner creates the plan to realize the required changes, and the Executer provides the mechanism

1SLO (Service Level Objective) is an element of the SLA (Service Level Agreement) between a service provider
and a service consumer. The SLO measures the achievement of a quality attribute of the service.
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Figure 3.1: Basic functional diagram for the case of study. (The arrows point the direction from source to
target in the corresponding action)

to instrument the changes over the managed system. Figure 2.3 illustrates the IBM’s autonomic
manager.

To guarantee the extra functional requirements of the system in the case of study, it is required
for the system to perform a self-adaptation, if needed, in order to meet the objectives of the system.
Table 3.1 shows the correlation between the MAPE activities and the case of study elements, in
order to meet the desired behavior of the system.

The complete details of the Case of Study for this project are described in Section 4.2, page 31.

MAPE Case of study elements

User (Mobile Application) Videoconference System (Server
Application)

Monitor

- Type of connection and bandwidth re-
strictions (Throughput and Availabil-
ity)

- Amount of registration request in a
specific interval of time (Throughput)

- Point of access, internal or external
(Confidentiality)

- Amount of time during registration
(Performance and Capacity)
- Amount of users attending a video-
conference in a specific interval of time
(Availability)
- Amount of videoconferences in execu-
tion at the same time (Throughput)

Analyzer
-SLO’s fulfillment
-Need for adaptation

Planner -Adaptation plan to achieve the SLOs

Executer -Execute the adaptation plan in the target system

Table 3.1: Specific actions for each element in the system in the Case of study
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3.2 Architectural Patterns in Context-Driven Self-Adaptation

As mentioned in Section 2.5.2, David Garlan and Mary Shaw considered a number of common
architectural styles. For this reference architecture, three of these styles are reused.

Pipes and Filters

In this architectural style, each component has a set of inputs and a set of outputs, and the data
is processed in such a way that both streams are different. The data processing is accomplished by
applying local transformations [8].

The pipe and filter elements are described as follow:

• FILTER: This component uses the data in the input stream, applies transformations to it and
deliver it through the output stream. Filters are unaware of their predecessor or successor
filter in the line.

• PIPE: This component is the connector of the filters and transport the data between them.

As a consideration, the basic premise of this architectural style is that the order of the filters is
not important. However, this consideration does not apply for the reference architecture to design in
this project, because the order of the filters is important and it can’t be altered. This specialization
is called pipeline, which restrict the topology to a linear sequence of filters, the amount of data on
a pipe, and a well-defined type of data [8].

In our reference architecture we have the necessity to transform data from one component to
another. This is, the data that is being monitored in one element needs to be analyzed later
by other element, but as this data is not of the same kind, it needs to be transformed from one
element to the next. The same consideration applies for the analyzed data and the development of
the adaptation plan.

Event-based

This architectural style is used in solutions in which a software component provides a set of pro-
cedures and functions to interact with other components by invoking those routines. However, the
implicit invocation implied by the association of these routines to the foreseeable events that can
be faced by the system at runtime is currently the most used technique to manage context event
processing. Those events are associated to one or more registered procedures, in that case the
system implicitly invokes the corresponding procedures to attend the event [8].

The event-based elements are described as follow:

• COMPONENT: This element is a module whose interface provides a set of procedures and a
set of events. The component can associate some of its procedures with events of the system.

• PROCEDURE: This is the piece of operation that responds to a triggered event. Is bound
with an event, and it is invoked at runtime implicitly.

In our case of study we need to execute and/or trigger event over some components such as the
target system and the sensors and effectors.

16



Blackboard

This architectural style is the type of a repository. In this style a component is responsible to store
data and share it with other components [8]. The blackboard elements are described as follow:

• KNOWLEDGE SOURCES: This is the element with the knowledge that will be store in the
blackboard data structure. Are independent to each other and only interact through the
blackboard.

• DATA STRUCTURE: This is the stored data needed to solve a problem. The knowledge
sources make changes to the backboard to reach the solution to the problem. This data is
shared among the knowledge data sources.

• CONTROL: This element alerts the knowledge sources when a change in the blackboard has
been made.

In our case of study we need to exchange data information among the elements regarded to the
adaptation requirement.

3.3 Reference Architecture Data Flow

In Section 2.5, we described the process to derive a reference architecture. This reference archi-
tecture is the result of the mapping between the reference model and the software elements along
with the data flow required to connect the components.

3.3.1 Context Metamodel

According to MDE2 a metamodel describes concepts that can be used from modeling the model,
and it describes in an abstract way, the possible structure of models. The keyword on modeling is
the abstraction of real scenarios. Metamodels and models have a conformance relationship [22].

Figure 3.2: The four metalevels of OMG [22]

OMG3 defines four metalevels for MDE as shown in Figure 3.2. The lowest level M0, is the
final an concrete level or for better understanding, the runtime program. The model for this level,

2MDE: Model-Driven Engineering
3OMG: Object Management Group
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placed in level M1, defines the classes with their attributes, relationships and constrains. In M0,
realized as classes in a programming language such as Java, the class instances take values that
represent concrete snapshots of the system at runtime. Hence, M1 is the first abstraction of M0.
Moreover, M0 is an instance of M1 but not necessarily the only one. Following this scheme, The
metamodel level M2 is an abstraction of a model M1. This metamodel defines the structure which
M1 is built. The highest level is M3 which represents the abstraction of the metamodel. This last
level is usually to define modeling languages (i.e. The MOF4 is the OMG’s meta-metamodel to
define M2 languages such as UML).

For this reference architecture’s data flow, the context model is based on the context metamodel
proposed by Villegas et al. [29] shown in Figure 3.3. For our reference architecture, not all the
metaclasses of that context metamodel are necessary, given the scope of this project.

Figure 3.3: Context Metamodel by Villegas et al. [29] and the subset we used

4MOF: Meta Object Facility
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3.3.2 Context Model

As mentioned before, a model is an instance of a metamodel, in our proposal we use a subset of the
context metamodel proposed by Villegas et al. shown in Figure 3.3 grouped by the red dashed line
[29] as a model for the data to be exchange among the components of our reference architecture.
This subset excludes the acquisition mechanism for the context and the provisioning mechanism
because of the scope of this project.

Context Model entities

As noticed in the IBM’s proposal explained in Section 2.3.2 the MAPE components are connected
to each other as a mechanism for adaptation. Each component receives information about the
context, process it and deliver it to the next components in the loop. Figure 3.4 shows the given
names for the data to communicate each component in the MAPE loop: Context Data, Context
Event Information, Diagnosis, Adaptation Actions and Commands.

Figure 3.4: The MAPE loop data

However, only the context data, context-event information and diagnosis are instances of the
context model. The data adaptation actions and commands are not instances of the context model
but sets of strings.

Considering the above, the context model required for the reference architecture data flow must
represent the three types of data mentioned before: context data, context-event information and
diagnosis. Figure 3.5 shows the context model derived from the context metamodel subset to
express the MAPE loop data flow which is related to the context. In the same way, the model
is transformed into an instance, in this case a class diagram to represent the context. Figure 3.6
shows the correspondence from the model to each class that represent the context. See Appendix
B.1 for full details on the corresponding Java implementation Java implementation.

However, to illustrate this MAPE loop data required to communicate the MAPE loop compo-
nents, and the relation with the context model, lets assume the following scenario: An SLO defines
that for the videoconference application the time during the process of a client registration must be
less or equal than x seconds. The SLO also requires that the monitoring for the registration time
must be in periods of 1 minute each in order to analyze the average time of all registrations during
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Figure 3.5: Context Metamodel vs. Context Model (Dashed arrows represent the ”instance of” relationship)

that period of time. If during that minute the 80% of requests compute an average registration time
above the x seconds then adaptation is required because the SLO is not being fulfilled.

Context Data: this type of data is the result of the Sensor component activity (See Figure.
3.4). This type of data carries the information of the context events being monitored. Hence, this
data must represent the context entity that is being sensed along with its set of properties, and the
property that triggered an event that was sensed or the property that is configured to be sensed.
Indeed, the context model entity Context Data is an instance of the Observation metaclass. This
Observation belongs to a Context Entity and its set of Context Property objects.

For our example scenario, the Context Data will indicate that the observation has been made
after some registration request. The registration request is the Context Entity and the Context
Property is the time that the registration took.

Context Event Information: Once the Monitor component receives the Context Data from
the Sensor component and processes it, the Monitor must deliver substantial information about
the current state of the context. The Context Event Information data, must represent the current
state of a context entity according the SLO terms by the performance of a set of operations. In
those terms, an Context Event Information data is an instance of the ContextEntity metaclass and
its set of Context Property instances of ContextProperty metaclass to represent the current state.

In our example scenario, the Monitor component usually receives more that one Context Data
about registration time. According to its responsibility, the Monitor must inform all of the Context
Data during a periods of 1 minute, lets assume 115 in total. Once the period of 1 minute is
reached, the Monitor would compute the result of its operation, that means, the total percentage
of registration duration times above the x seconds, that is 85%. Then, the Monitor component
delivers to the Analyzer the registration times as a Context Entity and a set of properties: the
percentage result and the amount of registration requests.

Diagnosis: Finally the Analyzer receives the Context Event Information from the Monitor and
evaluates the fulfillment of the SLO. During this evaluation, the Analyzer component must deliver
a Diagnosis data as a relationship between two context entities: the context entity in its current
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Figure 3.6: Context Model vs. Context Class Diagram (Dashed arrows represent the ”instance of” rela-
tionship)

state and the same context entity in its desired state.
Following this, for the described scenario the Analyzer will compare the Context Event Infor-

mation received with the SLO terms and determine that is not being fulfilled. Then the Analyzer
delivers to the Planner the Diagnosis data where the context entity ’registration request’ has a
current property ’duration time’ with value 85% and the desired value for the same context entity
in the property ’duration time’ must be 80%.

At this point, the Planner receives the Diagnosis and continues the loop for the adaptation
mechanism, as described in the Figure 3.4.

3.3.3 Context Type Tree

The adaptation mechanism with some human assistance, must perform a classification of the context
entities that is able to identify. We will consider this classification as a context type. According to
the Context Metamodel in Section 3.3.1, context types are instances of the ContextType metaclass
and in the model it becomes an unique attribute. Following the relations in the context metamodel,
this type attribute belongs to three elements in the model: Property, ContextEntity and Context
Event Information.

Figure 3.7 shows the tree for the different values of ContextType that are possible in our
reference architecture. However, this is not an static tree, because in a concrete architecture this
information will depend on the context reality. Hence, this context type tree belongs to the scenario
for the case of study but can serve for other applications.

3.4 Component-Based Reference Architecture Proposal

As described in Section 2.5 IBM’s proposal for adaptive systems includes an intelligent loop called
the MAPE loop [12]. One of the main goals of this project is the development of an architecture for
component-based self-adaptive systems that is extensible and with the level of abstraction required
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Context types



(1) Information



(1) Data Property


(1) String
(2) Int
(3) Double

(2) Occurrence

(3) Operation

{
(1) Sum
(2) Count

(2) Event

{
(1) Invoke
(2) Occurrence

(3) Source



(1) Hardware


(1) Hardware Service
(2) Device
(3) Configuration Value

(2) Software


(1) Method
(2) Attribute or Property
(3) Software Service

(4) Execution Time


(1) After
(2) Before
(3) During

Figure 3.7: Context Types tree

to implement self-adaptive software. Figure 3.8 presents our reference architecture in which the
MAPE loop is included based on the original IBM’s proposal.

To clarify the understanding of this architecture, the components are divided in three groups:

1. The components related to the interaction with the context: The Target System compo-
nents and the Context-Entities.

2. The component related to allow the human interaction in order to administrate the adap-
tation mechanism: the Administration Management Console (AMC) component.

3. The components related to the adaptation mechanism: the Sensor, the Monitor, the
Analyzer, the Planner, the Executor, the Effector and the Knowledge Base (Also known as
MAPE-K).

3.4.1 The Context Interaction Components

As defined by Villegas et al. context is anything that interacts with a target system and it can be
affected by the target system or the same way round [29]. The components in this group are those
related to the context, either because they are the context or affected by the context.

22



Figure 3.8: Component-based reference architecture for self-adaptive systems

Target System

In the IBM’s proposal, this element is also called the managed element [12]. In our proposal,
the Target System comprises a set of components where the adaptation is going to take place.
The Target System is the system we intend to adapt and must be a component-based software
system executed in a component runtime system. Moreover, the specific services to instrument the
adaptation actions are provided by the runtime and not the target system. The monitoring services
must be provided by components deployed by the adaptation strategy.

The Target System in our reference architecture is represented as one component, however, this
does not imply that is smaller or less complex than the adaptation loop.

Context-Entities

These components represent the context monitored and whose behavior will affect the target sys-
tem determining its adaptation. In some cases, the Context Component and the Target System
Component are the same, because the system itself is its own context.

23



3.4.2 The Human Interaction Components

This reference architecture is based on the self-adaptive principle and in order to perform this
self-adaptation some human intervention is required. This component allows human interaction to
define policies and configurations over the adaptation mechanism.

Administrator Management Console (AMC)

This component allows system administrators to configure the SLOs that the Target System must
fulfill during execution and that the adaptation mechanism must evaluate to decide if adaptation
is required. This component follows a SLO’s general definition of the Quality of Service (QoS)
Contracts based on the e-graph representation proposed by Tamura et al. [26].

To illustrate the AMC role in this reference architecture, lets assume an hypothetical SLO
definition in this scenario that indicates that the videoconference server application must attend
no more than one hundred (100) client’s connection requests per server in an interval of one (1)
minute, and if that number of requests is reached, another server must be turned on and the client
requests must be balanced between all the online servers.

The system administrator configures in the ACM component these two Context-Entities, the
number of servers and the number of connection requests, are part of a QoS Contract meant to be
fulfilled by the Target System. Also, for those context-entities will specify acceptable values, i.e.
less or equal that 100 for the connection requests and 1 for the number of servers online. Finally,
the Adaptation Mechanism will use this SLO information to meet the adaptation requirements.

3.4.3 The Adaptation Mechanism Components

These components are derived from the original IBM’s MAPE-K proposal [12] and as described be-
fore, they are in charge of the adaptation process. This set of components process data information
about the context into adaptation decisions and therefore is the heart of this reference architecture.

Sensor

This component is the starting point of the MAPE-K loop and it is configured to make measure-
ments about the context with the purpose of sensing a specific variable of interest during runtime.
A sensor (also known as Monitor Probes) acts as a watcher and interacts with the monitor compo-
nent as shown in the Figure 3.8. The sensor provides a representation of the target system’s state
in a specific variable of interest and other external systems information, in the form of context
entities needed for the adaptation mechanism.

This component has two action modes: Push and Pull. In the Push mode, the monitor sends
the order to perform sensing over the context. This mode is useful in the case the monitor needs
information of the context in an specific time. In the Pull mode, the sensor performs the sensing
over the context every time it detects expected changes or events triggered in the context and sends
it to the monitor component as information that something happened in the context.

Monitor

As described by IBM, this element is responsible to monitor the sensed context [12]. The data
required to perform this monitoring is called context data and is provided by the monitor probes,
in this case, the Sensor component. However, this context data is every information about the
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context that the monitor probes can sense, either because something happened in the context
or because the Monitor asked it to gather information in an specific time. Despite this, all the
context data that the monitor probes are providing are not necessarily information required to be
monitored. It is the Monitor’s responsibility to filter all that context data to keep only the one that
is relevant. To filter this information, the Monitor must configure some Monitoring Policies that
must be derived from the SLO definitions. In this reference architecture proposal these monitoring
policies are provided by the Knowledge Base Component.

As an example, lets assume that the context to be sensed is the one affecting the videoconference
server application. The monitor probes will notice every change in the server software system, either
hardware (change of smartphone geographical location, change of network access, etc) or software
(the number of clients connected to the videoconference server, the service of registration is up,
etc) and will announce to the monitor that those events of change had occurred.

To fulfill our hypothetical SLO, the resulting Monitoring Policy will set that the context entities
to be monitored are the client’s requests of connection and the number or servers online in a period
of one (1) minute. According to this case, the Monitor will filter all the context data to only the
one that inform about the client’s requests of connection to the videoconference server and the
number of servers online attending those requests. With this context data, the Monitor must build
an Context Event Information to report the context events to the Analyzer component.

Analyzer

According to IBM’s proposal, this element is responsible to study the Context Event Information
given by the Monitor in order to evaluate if the system objectives are being fulfilled [12], in this
case, the SLO. Moreover, the Analyzer’s objective is to determine the achievement of the SLO, but
also it has to decide whether an adaptation is required. As an income, the Analyzer receives from
the monitor the context events and then the Analyzer must evaluate it against the SLOs configured
in the system. To perform this evaluation the Analyzer must configure some Analyzing Policies
provided by the Knowledge Base Component that determine the analyzing parameters to decide
the fulfillment of an SLO.

According to our scenario, lets assume that the Monitor gives to the Analyzer the Context
Event Information of one hundred ten (110) clients in an interval of one (1) minute and one (1)
server is online. The Analyzer must retrieve the SLO related to that context entity and evaluate
the level of fulfillment. In our case the result can be either that it is below, above or acceptable
as the expected. In our example of SLO, the maximum of clients per minute per server is one
hundred (100) which means that this result is above the expected. In this case, the Analyzer must
build a Diagnosis for the Planner in order to inform the adaptation requirement by comparing
both context states: current and desired. The current state is one hundred ten (110) clients per
minute attended by one server, and the desired is one hundred (100) clients per minute attended
by one server according the SLO definition. This difference in the diagnosis means that the SLO
is not being fulfilled and adaptation is required.

Planner

As described in the IBM’s MAPE-K loop proposal, the Planner element is responsible lo plan the
required adaptation over the system[12]. This element is responsible to build a plan with all the
adaptation actions needed in order to perform certain changes in the target system and then, reach
the desired state of the context entity provided by the Analyzer in the diagnosis. This plan is a
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full step-by-step set of instructions that can be delivered as a set of Strings, and that must be
processable by the Executor. To build this plan, the Planner must follow some Planning Policies
provided by the Knowledge Base Component.

Following our scenario, the adaptation plan might include the following actions: (1) Find an
available server for the videoconference service. (2) Send the ”turn on” command. (3) Start the
videoconference service (4) Configure the connection balance as true. These actions must be set as
an instruction and that instruction will depend of the executor programming language. Finally, the
plan built by adaptation actions, is delivered to the Executer to close the loop of the adaptation
mechanism.

Executer

This is the last element in the IBM’s intelligent Loop and is responsible to execute the adaptation
plan[12]. This component has the purpose of translating to commands every step of the plan
and guarantee the correct execution over the target system. This component is connected to the
Effector, the component that can instrument directly the target system.

Effector

This element is the finishing point of the MAPE-K loop interfacing the adaptation mechanism
and the target system. The Effector component is configured to effect the changes needed to
alter the target system’s behavior according to the adaptation needs. The Effector can either
modify parameters of system operations or execute operations. This component is connected to
the Executor component and receives from it the commands to execute over the target system.

Knowledge Base

In the IBM’s proposal, the Knowledge element is connected to each of the four components in
the MAPE-K loop[12]. As described in Chapter 2.5, the architectural style for this component is
Blackboard and the main processing for this component is to store data. This component’s main
purpose is the provisioning of policies for other components in the MAPE-K loop (i.e. Monitoring,
Analyzing, and Planning policies). Among other implementations, the knowledge base can be used
to manage the historical behavior of this adaptation mechanism during time, but this application
is out of the scope of this project.
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Chapter 4

Reference Architecture Evaluation

In Chapter 3 we presented our reference architecture in detail and introduced an application scenario
to illustrate the requirements that justify our design decisions. In this Chapter we recall this
application scenario and use its implementation to evaluate a concrete architecture derived from
our reference architecture. The goal of this evaluation is to determine the practical feasibility of our
reference architecture. and explore its extensibility, in this case to support the dynamic adaptation
of SCA Software applications.

4.1 Component-Based Reference Architecture Implementation

Several platforms for developing, deploying and executing component-based software are available,
currently: JEE (Java Enterprise Edition) is the initiative proposed by Sun1 by the implementation
of EJB (Entity Java Beans) [13]. On the other hand, Microsoft has an initiative using its platform
.Net for the development of software components but the specialty of this platform is software
components for web applications [4]. However, the intention of our proposal is the extension
and distribution capability and the contribution for the software engineering community, in which
case an open source platform seems more appropriate than a licensed one. In order to support this
initiative we chose Java J2SE (Java Standard Edition) platform because even though J2EE is meant
to be for component-based software development it does not follow an standard for component-
based software.

4.1.1 Service Component Architecture (SCA)

The SCA (Service Component Architecture) Specification was proposed by a group of vendors (i.e.
BEA, IBM, Oracle, SAP) as a response to the need for component-based software development
having on mind two main definitions: (i) a way to define components and (ii) a mechanism for
describing how those components work together [19].

As described by Beisiegel [2], an SCA application can be built by more than one component
each running on a different machine and even in a more complex scenario, written in different pro-
gramming languages, relying on different communication mechanisms to operate properly. Indeed,
the main goal for the SCA specification was to define the elements of these components and the
interaction among them. As a result, components and composites are defined in the specification.

1Sun company it is now owned by Oracle company
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Components are software applications with three elements: services, references and properties
and Composites are larger structures that combine components. Composites are described by an
XML-based file in a format called the Service Component Definition Language (SCDL)

In Figure 3.8 awe presented the abstract component of our reference architecture. In this figure,
a service is the interface provided, a reference is a services required from another component and
properties are not specified. Figure 4.1 shows an instantiation of our reference architecture in terms
of SCA components for a specific implementation. In this Figure services (Green chevrons) and
references (Purple chevrons) are explicit between components. It is important to note that not all
the services provided and required in the reference architecture are described in this implementation
as SCA services and references, the reason is because of the scope of this evaluation. In this case,
for example there are no planning or analyzing policies, which means that this implementation uses
an static evaluation of the SLO Contracts (Analyzer component) and there is no Adaptation Plan
from the Planner component.

Figure 4.1: An instantiation of our reference architecture in terms of SCA Components

Composite files

An SCA implementation can be specified either by one composite or by as many as components
are in the application. For this implementation, each component of the reference architecture will
be described by its own composite file to fulfill the extensible capability and distribution goals that
were defined for this reference architecture.

The elements in a composite file for this implementation are:

• component tag: Defines the component name and other properties such as (i) Java source
class implementation, (ii) Java source interface services definition, and (iii) the name of the
references

• service tag: Defines for a component service the (i) communication protocol, (ii) machine
where is located, (iii) the port in which the component service will be answering, and (iv) the
name of the service.
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<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:frascati="http://frascati.ow2.org/xmlns/sca/1.1" name="SensorRMIService"

targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912">

diaponent name="SensorServiceComponent">

<implementation.java class="sensor.lib.SensorImpl" />

<service name="SensorService">

<interface.java interface="sensor.api.SensorService" />

</service>

<reference name="monitorService" />

</component>

<service name="SensorService" promote="SensorServiceComponent/SensorService">

<frascati:binding.rmi host="localhost" port="1102" serviceName="Sensor" />

</service>

<reference name="monitorService"

promote="SensorServiceComponent/monitorService">

<frascati:binding.rmi host="localhost" port="1100" serviceName="Monitor" />

</reference>

</composite>

Figure 4.2: Composite File example for the Monitor Component

• reference tag: Defines for a component reference the (i) communication protocol, (ii) ma-
chine where it will be found, (iii) the port in which the component service will be found, and
(iv) the name of the service.

Figure 4.2 is an example of a composite file for this implementation, in this case for the Sensor
component that will be deployed using an Open Source middleware platform for SCA components
named FraSCAti implemented by the OW2 Consortium2. In this implementation both network
interfaces are localhost because the implementation is running on the same machine, but if it is
required a distribution of the components on different machines, the network interface in the refer-
ence tag of the composite files must be replaced with the IP Address were the required component
is running.

As specified by the <implementation.java> tag, this component is implemented by the Java
class sensor.lib.SensorImpl and its service is provided by the Java interface sensor.api.SensorService.
This component provides a service named SensorService using RMI as a communication protocol,
and is located in the localhost network interface through the port 1102 by the name Sensor. Also,

2FraSCAti official web site: http://wiki.ow2.org/FraSCAti/Wiki.jsp?page=FraSCAti
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this component requires a service from the Monitor component, thus it defines a reference named
monitorService with RMI communication protocol and will search it in the localhost network inter-
face through the port 1100 by the name Monitor. According to this composite file both components
will be running in the same machine. The complete set of composite files are presented in Appendix
C.

4.1.2 Java Implementation

Figure 4.3 describes the general implementation of the components, which is based on two packages
(i) component.api where the Java service Interface is defined with the services that the component
provides and an Abstract class is defined with the basic implementation for the methods, services
and references from other components in order to guarantee an extensible capability for our refer-
ence architecture, and (ii) component.lib where the Java implementation classes are defined with
the specific behavior required by this case of study.

Figure 4.3: The general Java implementation classes and packages for the MAPE-K components

MAPE-K

Figure 4.4 describes the Java class diagram for each SCA components in the reference architecture
and the relationship among these classes. For each component we can see the general structure
applied and it is important to notice that the Abstract class is connected to the other services
interface, this shows the relationships among the components. Context-Entities and Target Sys-
tem components described as separated elements in the reference architecture are both related
to the RVCS software in this implementation, and the information about changes is stored in a
RVCS server database for the use of the monitor probes. This is the reason why the Sensor Imple-
mentation sensor.lib.SensorImpl has an object form a class sensor.dbconn.SensorDBPostgres with
the implementation for the database connection to gather the context changes information. An-
other important class is the amc.lib.AMCImpl with an amc.dbconn.AMCDBPostgres object that
will search the information in the mapek database3 to build the SLOs required to perform the
adaptation analysis. Each abstract class defines the behavior of the components and relationships

3See Appendix A.2 to further information of the technical installation and configuration of this database
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with other components, but for this case of study some specialization was required and the classes
sensor.lib.SensorImpl, monitor.lib.MonitorImpl, analyzer.lib.AnalyzerImpl, amc.lib.AMCImpl and
kb.lib.KBImpl has some particular implementation particular to this case of study and must be
modified if other case of study is intended. However, as mentioned before, this implementation
is meant to be extensible and the interfaces and abstract classes are sufficient to provide this
capability.

Figure 4.4: MAPE-K Java Class Diagram (The complete version is presented in Appendix B.1 Fig.B.1)

4.2 Application to the Case of Study

As mentioned in Section 3.1, the case of study for this project implies the interaction of two
applications, one end-user application running in a mobile client, and a server application. This
case of study is based on the running example presented by Tamura et al.. [24] which uses a
simplified version of a Reliable Video-Conference System (RVCS) that we use to illustrate the
requirements for dynamic reconfiguration.

4.2.1 The RVCS Scenario

The RVCS comprises two software applications in which self-adaptation takes place. Both will
be evaluated separately in order to identify the context entities required to be monitored in each
system and to design the appropriate mechanism to perform the self-adaptation.
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Figure 3.1 in page 15 describes the interaction between the two software applications. A video-
conference mobile client registers and attends videoconferences that are hosted in a videoconfer-
ence server. Both applications establish the Quality-of-Service (QoS) conditions to be fulfilled
by the videoconference. The self-adaptation mechanism for both applications must rely on the con-
text changes, for example, a switch in the wireless connection of the client or an increase in the
registration requests in the server. In any case, the RVCS must operate in the right conditions to
fulfill the service agreements and perform the adaptation effectively.

4.2.2 Quality of Service Requirements

In order to maintain fulfilled the required QoS levels under the different context conditions faced
by the target system, the Adaptation Mechanism is required to perform some specific activities.
Table 3.1 shows these activities for each component (as described in Chapter 3) in both systems,
and the context changes intended to be monitored. These activities correspond to the fulfillment
of some quality attributes: (1) Confidentiality, (2) Availability and (3) Throughput. Tamura et al.
defined the QoS contracts for these quality attributes [24]. In this case of study, we guarantee the
Throughput quality attribute in the RVCS Server application in which the number of registration
requests are computed as transactions per minute and the maximum limit that the server is capable
to attend is delimited by the day of the month in the SLO Contract.

Table 4.1 summarizes for this contract the context events and the service level objectives be
fulfilled (SLO). For this case a Context Event is the day of the month and the SLO is the maximum
of transactions per minute allowed for the server. In the case in which this maximum is surpassed
the adaptation mechanism must reconfigure the RVCS Server, otherwise the adaptation mechanism
performs no operation.

Context Events SLO
Day of the month Transactions per minute

1-15 100
16-23 150
24-27 300
28-31 900

Table 4.1: QoS contractual conditions and corresponding SLO for Throughput as presented by Tamura et
al. [24]

However, for this implementation it was defined a representation of the SLO Contracts as Java
Objects. Figure 4.5 describes the Java implementation of the SLO Contracts and Monitoring
policies. The reference model is the SLO contract defined by Tamura et al. [24]. According to this,
Figure 4.6 describes the Object representation of the SLO Throughput contract and Appendix
B.3 the java implementation lo load this information. As mentioned in Section 3.4.2 the AMC
component is responsible for the delivery of this SLO so the Analyzer can analyze the information
received form the Monitor by matching it against the SLO and finally decide whether adaptation
must take place in the target system.

In this case of study, the AMC gathers the information from the mapek database4 for the
Throughput contract, in this case a single data table named c3-predicate to store the predicates

4This is a database created with the purpose of storing information of the contract
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that are represented as SLOPredicate objects, in this table we have two columns: observation, to
store the Day of the month and value to store the Transaction per minute following the information
mentioned in Table 4.1.

The QoScontract name is a String resulted by adding the Quality Attribute Throughput and the
code C3 that corresponds to the Third Contract defined in Section 4.2.2. then, the QoSProperty
is assigned by the constant THROUGHPUT defined by the QoSProperty class and the SLOObli-
gation defines the type of context event for this contract, in this case defined by the constant
TYPE METHOD because this quality attribute will depend on the Registration method in the
RVCS Server. This SLOObligation object has a relation with SLOPredicate (described before) and
ContextCondition classes. The ContextCondition class represents what it is to be observed in the
context to check this contract. For this implementation two observations are required: Day of
the month and Transactions per minute, both are integer data types, and no mathematical
operation is required.

As noticed in Figure 4.6, two extra classes are described: The MonitoringPolicy class that
expresses the context entities or conditions that are meant to be observed, and the Observation
definition during the monitoring. For this case of study, the MonitoringPolicy indicates that the
type of Observation is TYPE INVOKE which means that some service (in this case is the registra-
tion service) will be invoked in the context, and in a period of 60 seconds, the Monitor component
must count these events, in this specific case, the amount of times the registration method is in-
voked. As a MonitoringPolicy is related to a SLO Contract, the monitoringContext object is the
same contextCondition of the SLOObligation class, which means that the Monitor must be aware
of information related to the Day of the Month and the Transactions per minute. These monitoring
policies definitions are build by the Knowledge Base component as Java objects derived from the
SLO contracts in the AMC component, and are delivered to the Monitor component.

This implementation uses a very simple Analyzing Policy based on a numeric evaluation: The
Day of the month in the current execution is compared to one of the SLOPredicate observation
(i.e. today is the 3rd and in the SLOPredicate observation array is the 3rd position). Then the
Transactions per minuted in the current execution are compared to the value array same position
of the day of the month (i.e. as today is the 3rd position, then the 3rd position of the value array
is taken to comparison), if the evaluation is below or equal the the SLO is being fulfilled. If it is
greater then the SLO is not fulfilled and an adaptation is required.

Notice that an Analyzing Policy might include a tolerance threshold, or an historical evaluation
based on past behavior (For example what happened three days ago might affect today’s decision),
or even another non mathematical evaluation. This Analyzing Policy will depend on the type of
information in the SLO Contract and the type information gathered by the context that will no
necessarily be numbers, they could also be predicates encoded in Strings.

4.2.3 The Adaptation Mechanism for the RVCS

As mentioned previously, it is necessary that the adaptation mechanism must be separated from the
system itself. Figure 4.7 describes the desired behavior for this self-adaptive software system. The
RVCS provides two services, the first is a service called getRegistrationActivity with the registration
information and consumed by the Adaptation Mechanism, and a second service called feedAdapta-
tionCommands in which the Adaptation Mechanism can deliver all the adaptation execution plan
so the RVCS can perform self-adaptation.

As mentioned in Section 4.1.2, for this implementation the RVCS server has an additional table
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Figure 4.5: Java Class Diagram for SLO Contracts and Monitoring Policies

in the database in which is registered the registration information (other alternative could be the
use of log files). The Sensor component implements a class to connect to the database and queries
the information related to the last minute. As for the scope of the evaluation, this solution seems
enough, however, other alternatives worth of future work, the Sensor component must specialize
its touchpoints to be able to intrude the target application in the search of changes in the context.

Figure 4.8 describes the deployment of the applications configured for the evaluation. In this
configuration three separated applications are executed: (i) The RVCS, (ii) the Adaptation Mech-
anism (AM), and (iii) the SoapUI Tester. The AM and the SoapUI Tester applications are both
connected to the RVCS application. Notice that the AM is connected only to get the context
changes information and it is not connected to deliver the adaptation instructions. The scope of
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Figure 4.6: Java Object Diagram for SLO Throughput Contract and Monitoring Policy

Figure 4.7: RVCS and Adaptation Mechanism interaction

this test does not provide the adaptation instructions but just a message indicating whether adap-
tation is required and some dummy instructions to guarantee the data flow through the Planner,
Executer and Effector components. The adaptation Plan and Execution requires a more complex
and specific work.

4.3 Test Cases

For this configuration the MAPE-K monitors the SLO Throughput Contract as described in Section
4.2. The general test case is described in Table 4.2 in which the input is the Day of the month
(d) and the quantity of transactions received in the last minute (x), the evaluation is the match
between input with the current day range and the maximum transactions per minuted allowed, and
the output depends on the result of the evaluation that can be either ”Adaptation Required” or
”No adaptation required”. For this evaluation, Adaptation is required when x is greater than the
maximum allowed.
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Figure 4.8: RVCS and the MAPE-K deployment configuration set for the evaluation

Input Evaluation Expected Output
Context Information SLO condition MAPE-K Response

Day:d, Tx/min:x d ∈ Range. If x <Max Tx/min No adaptation Required

Day:d, Tx/min:x d ∈ Range. If x = Max Tx/min No adaptation Required

Day:d, Tx/min:x d ∈ Range. If x >Max Tx/min Adaptation Required

Table 4.2: General conditions for the Test Cases for the MAPE-K evaluation corresponding the SLO for
Throughput

4.3.1 SoapUI Test Results

To generate the actual values for the concrete test cases we used SoapUI tool5. The RVCS service
to test is ”Registration to conference” in order to evaluate the SLO Throughput Contract.

In this test implementation, SoapUI stresses the RVCS system by creating a number of hy-
pothetical attendants previously created in the RVCS system as threadX users where ’X’ is a
consecutive number corresponding to the thread generated by the SoapUI implementation. All
these attendant clients will register to all the conferences available in the system. While the RVCS
is running and attending these requests, the MAPE-K is also running and querying every minute
for this type of requests registered in the database table. Table 4.3 describes the information and
conditions during the test of the MAPE-K in this RVCS scenario. For this implementation RVCS
applications and MAPE-K are running in the same machine. However, RVCS distribution does not
affect the test because the context information is in the RVCS database.

Information Test 1 Test 2 Test 3 Test 4 Test 5

Day of the month 15 16

Conferences in the RVCS System 7

Max Tx/min SLO 100 150

Test Tx/min (tx) tx = 0 tx <= 100 tx >100 100 <tx <= 150 tx >150

RVCS deployment Single Machine

MAPE-K deployment Single Machine

Table 4.3: Contract Information for the Test Case scenario

5Refer to Appendix A.5 for the complete implementation of the SOAP UI and the configuration files
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Table 4.4 presents the results of the 5 tests performed over the described scenario in which the
MAPE-K responses are expected showing the expected behavior of the MAPE-K’s functionality.
Figures 4.9, 4.10, 4.11, 4.12, 4.13 illustrate the output for some of the executed tests.

Test No. SoapUI
Threads

RVCS Reg.
Requests

SLO Information Evaluation MAPE-K Output

1 0 0 Nothing to evaluate

2 10 70 15 ∈ Range:1-15 →
Tx/min:100

Less No adaptation

3 20 140 15 ∈ Range:1-15 →
Tx/min:100

Greater Adaptation

4 20 140 16 ∈ Range:16-23 →
Tx/min:150

Less No Adaptation

5 30 210 16 ∈ Range:16-23 →
Tx/min:150

Greater Adaptation

Table 4.4: Test results for the MAPE-K according the SLO for Throughput

Figure 4.9: Evaluation Test 1 Output example
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Figure 4.10: Evaluation Test 2 Output example
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Figure 4.11: Evaluation Test 3 Output example
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Figure 4.12: Evaluation Test 4 Output example
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Figure 4.13: Evaluation Test 5 Output example
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Chapter 5

Conclusions and Future Work

One of the most important issues in self-adaptation is to create the capability in the system to
reason about itself and its context. Control engineering uses feedback to measure and act upon
the changes in the context that affect the behavior of the system. Moreover, feedback loops become
important in the process the system must follow to measure a given property of the system and
then evaluate if the desired goals are being reached [11]. Software engineers have made significant
efforts to propose self-adaptive systems. However, these approaches are not general enough to
satisfy the requirements that different systems, data types, and configurations can pose. Often,
these proposals merge the adaptation mechanism with the target system making it very difficult to
analyze the adaptation capability as an independent system, and in addition, feedback loops are
not explicit in most of these proposals.

In this project we have developed a reference architecture that provides a general framework
to implement adaptation mechanisms for software systems. This reference architecture allows to
maintain a clear and complete separation of concerns between adaptation mechanisms and target
systems, enabling the evaluation, maintenance and analysis of the adaptation process in a self-
adaptive system. Moreover, each action in the adaptation process can be analyzed independently
as part of a specific component in the reference architecture.

Based on components, this reference architecture also provides component reuse, the ability to
be extensible and interoperable, which can help software engineers to specialize, extend and grow
the functionalities of each component, according to the necessities of the specific target system.
Moreover these components can be reused independently, as far as the target architecture pro-
vides the services required by them, which multiplies the reuse possibilities beyond the scenarios
considered in this project.

As an SCA-compliant implementation, our reference architecture fulfills the goal of being ex-
tensible, which is one of the major goals of this project. Also, each SCA component of the reference
architecture is defined in its own composite file in order to fulfill the distribution capability, which
is the second major goal of this project.

Building a reference architecture for self-adaptive systems was one of the challenges proposed
by Villegas et al. [30]. However, in this project we have identified an additional set of challenges
worth of future work, such as the following:

• Smoother touchpoints between the MAPE-K and the Context
As mentioned in Section 3.4.3 the Sensor and Effector components express the touchpoints
defined by IBM’s blueprint [12] connected to the Context and the Target System [29]. Our
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implementation does not connect itself smoothly with the context. The desired behavior for
this integration is that the Sensor would be embedded in the target system to analyze its
behavior and then report to the MAPE-K about any change in the context. In the same
way, the Target System exposes a service to receive the commands to perform adaptation,
but a mutual agreement between the Effector and the Target System must be configured
before. This is because the Effector, as an external component, must interpret the adaptation
commands to be effected over the system.

• Security between the Target System and the MAPE-K
As mentioned before, the Adaptation Mechanism is an external application that eventually,
if adaptation is required, will perform operations over the Target System. Therefore, it is
important the establishment of security policies and execution permissions between the Target
System and the MAPE-K, so the Target System can be sure that this external component is
reliable and can be trusted.

• AMC development to introduce SLOs from humans into the MAPE-K System
In Section 4.2.2 we described our representation as Java objects for the SLO contracts defined
by Tamura et al. [24]. However, translating SLO contracts from human language to objects
requires a specific software implementation suitable for any user in charge of this task in
the software system in a way that the system administrator can easily introduce or modify
SLOs according the organization requirements that directly affect the adaptation process.
Moreover, this SLO-definition task is highly important for the specification of the adaptation
mechanism and its implementation must consider a verification and validation process, as
well as a definition of safe states of SLO.

• V&V after adaptation
As mentioned by Brun et al. [3] and Tamura et al. [26] the development of self-adaptive
systems requires a quality mechanism to ensure that after adaptation the system is left in
a valid state and the adaptation process finishes as expected. Otherwise the system should
return to the last stable state known before adaptation. This validation and verification
implies a challenge to this reference architecture because a control feedback loop must be
necessary to evaluate the final state of the system according to a given quality criteria.

• Planner and Executer extensions
As mentioned in Section 4.1.1 our implementation of the reference architecture does not in-
clude the Planner and Executer implementations because of the scope of this project. The
Planner component tasks include the planning policies and techniques to generate the adap-
tation plan that eventually will modify the behavior of the target system. The Executer must
transform the adaptation plan to commands that the Target System interprets to change
itself according the new desired state. However, our implementation defines abstract Java
classes for both components with the required behavior to complete the adaptation loop but
do not effect any real change in the Target System, as implemented by Tamura [25].
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Appendix A

Implementation Technical Guide

Follow the next section to deploy the implementation and test of this project.

A.1 Software requirements

1. Operative System : Fedora 16

2. Postgres database version 9

3. JBOSS 6.0.0.20100721-M4

4. Apache Maven 2.2.1

5. FraSCAti runtime 1.4

6. SOAP 2.3.1

7. Java Development Kit (jdk) v.16 update 25

8. RVCS v1.6

9. M2 repository for this project

10. MAPE-K v17052012

11. SOAP UI v-4.5.0

A.2 Installation Guide

A.2.1 Software installation

Use superuser privileges to follow these instructions:

• Install Postgres server with superuser postgres and password postgresql and the default port
5432.

• Decompress SOAP file into /usr/local
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• Decompress JBOSS file into /usr/local

• Decompress MAVEN file into /usr/local

• Configure the variables in the local user as in root user. Modify or add the lines in the .bashrc
file in the home directory for both users.

• Decompress FraSCAti file into /usr/local

• Copy the Maven repository .m2 into /root

• Decompress the RVCS file in /root

• Decompress the MAPE file in /root

• Install the SOAPUI application using the installation wizard

A.2.2 Environment Variables

Make sure you set local and global variables according your installation. Follow these as an example:

• JAVA HOME in /usr/java/jdk1.6.0 25

• JBOSS HOME in /usr/local/jboss-6.0.0.20100721-M4

• JMFHOME in /usr/local/jmf/JMF-2.1.1e

• FRASCATI HOME /usr/local/frascati-runtime-1.4

• RVCS HOME=/root/icesi/RVCS-SCA-v1.6

A.3 Setting Up the RVCS Scenario

For each execution step, open an individual terminal and log in as root user.

1. Create the qoscaredb database

• Create a database named qoscaredb and an user qoscare with password qoscare and make
it owner for the qoscaredb database.

• With postgres privileges execute the scripts found in the RVCS/qoscare scripts-db folder,
to load the qoscaredb in the following order: 1-drop-tables-generated.sql, 0-createall-
generated.sql, 2-initial-data-generated.sql, 3-initial-data-generated.sql.

2. Execute JBOSS by executing run.sh located in /usr/local/jboss-6.0.0.20100721-M4/bin

3. Execute SCA Server by executing 1-rvcs-scaserver.sh located in /root/icesi/RVCS-SCA-
v1.6/bin

4. Execute SCA Chat Server by executing ./rvcs-scachatserver.sh located in /root/icesi/RVCS-
SCA-v1.6/bin
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5. Execute the RVCS Client executing in /root/icesi/RVCS-SCA-v1.6/src/scamodelclient the
line mvn Prun. As soon as the application is displayed log in with user and password ikay
and in the dropdown list select Attendant.

6. Execute the RVCS Testing service executing in /root/icesi/RVCS-SCA-v1.6/src/scamodeltester
the line mvn Prun.

A.4 Setting Up the MAPE-K Implementation

1. Create the mapek database

• Create a database named mapek and make user qoscare owner for the mapek database.

• With postgres privileges execute the scripts found in the MAPE-K170512 folder, to load
the mapek in the following order: 1-create-mapekDB, 2-insert-mapekDB

2. Run the MAPE-K implementation by executing MAPE-K/runMAPE.sh and runMAPE-
K/run.sh

A.5 Running the SOAPUI Test

Execute SOAPUI application and follow the next configuration:

1. Create a new project with name: RVCS Tester

2. Configure Initial WSDL: http://RVCS-Testing-service-IP-Address:9988/TesterServiceSCA?wsdl

3. Edit the file Request 1 presented in Figure A.1 according with the following information:

• arg0 it is a number that corresponde the amount of threads the will be generated to
request connection to the server

• arg1 it is an array of slots in which each of them is a RVCS client. For each slot
the following information must be configured: (i) currentCantRequest = 0, (ii) max-
CantRequest = X in which X represents the maximum quantity of connections that
the client is going to allow before passing to the next slot or waiting list, (iii) url = is
the URL address in which the test client wsdl is located (i.e., URL : http://Cliente-IP-
Address:9876/ServiceExecutionSCA?wsdl)

• arg2 corresponds to the name of the service method for the test (i.e., testConferenceReg-
istration)

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:int="http://interfaces.tester.rvcs/" xmlns:bal="http://balancer.rvcs">

<soapenv:Header/>

<soapenv:Body>

<int:testConferenceRegistration>

<int:arg0>10</int:arg0>
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<!--Optional:-->

<int:arg1>

<!--Zero or more repetitions:-->

<bal:Slot>

<!--Optional:-->

<bal:currentCantRequests>0</bal:currentCantRequests>

<!--Optional:-->

<bal:maxCantRequests>100</bal:maxCantRequests>

<!--Optional:-->

<bal:urlServiceTarget>

http://localhost:9876/ServiceExecutionSCA?wsdl

</bal:urlServiceTarget>

</bal:Slot>

</int:arg1>

<!--Optional:-->

<int:arg2>testConferenceRegistration</int:arg2>

</int:testConferenceRegistration>

</soapenv:Body>

</soapenv:Envelope>

Figure A.1: XML File configuration for SoapUI

4. Execute SOAPUI test

5. Check the MAPE-K console for information about the execution of the test
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Appendix B

Java Implementation Technical Guide

B.1 Reference Architecture Java Class Diagram

Figure B.1 shows the complete Java Class Diagram explained in Section 4.1.2.

Figure B.1: MAPE-K
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B.2 Context Library Java Class Diagram

Figure B.2 shows the complete Java Class Diagram explained in Section 3.3

Figure B.2: Context Library

B.3 Java implementation to load the SLO Throughput Contract

The method initQoSContractThroughput defined in the amc.lib.AMCImpl class, loads from the
mapek database the information to build the SLO Throughput Contract. As noticed,a QoSCon-
tract object is created an filled with the information, in this case, the day of the month and its
corresponding maximum transactions per minute. Figure B.3 presents the java implementation for
the AMCImpl class.

package amc.lib;

public class AMCImpl extends AAMC {
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private AMCDBPostgres dbconn;

private QoSContract initQoSContractThroughput() {

System.out.println("[AMC Service] - QoS Contract Throughput <start>");

/*

* The name of the contract is the sum of the qosContract ID and the QoS

* Property to be assured C1-Confidentiality C2-Availability

* C3-Throughput

*/

QoSContract contractThrougput = new QoSContract("C3-Throughput");

QoSProperty propertyP1 = new QoSProperty(QoSProperty.THROUGHPUT);

contractThrougput.addProperty(propertyP1);

SloObligation obligation = new SloObligation();

obligation.setContextEventType("Context Event Type Undefined");

SloPredicate predicate = new SloPredicate();

predicate.getObservations().add("DiaMes");

predicate.getObservations().add("Tx/min");

dbconn = new AMCDBPostgres();

ArrayList dbQuery = dbconn

.getDataBaseInformation("select * from \"c3predicate\"");

if (dbQuery.size() > 0) {

for (int i = 0; i < dbQuery.size(); i++) {

String[] val = (String[]) dbQuery.get(i);

int dia = Integer.parseInt(val[0]);

predicate.getValues().add(dia);

int tx = Integer.parseInt(val[1]);

predicate.getValues().add(tx);

}

obligation.setPredicate(predicate);

ContextCondition contextCondition = new ContextCondition();

contextCondition.getObservations().add("DiaMes");

contextCondition.getObservations().add("Tx/min");

contextCondition.getDataTypes().add("int");

contextCondition.getDataTypes().add("int");

contextCondition.getOperations().add(
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ContextCondition.OPE_OBSERVATION);

contextCondition.getOperations().add(

ContextCondition.OPE_OBSERVATION);

obligation.setContextCondition(contextCondition);

propertyP1.addObligation(obligation);

System.out.println("[AMC Service] - QoS Contract Throughput <end>");

return contractThrougput;

} else {

System.out

.println("[AMC Service] - QoS Contract Throughput could not load"

+ "SLOContracts from data base");

return null;

}

}

}

Figure B.3: Java Class Implementation for the AMC Abstract class

B.4 Java implementation to load the Throughput Contract Monitoring Policies

The method initMonitPolicyThroughput() defined in the kb.lib.KBImpl class, loads from the SLO
Throughput Contract the monitoring policies. Figure B.4 presents the Java implementation for the
KBImpl class.

package kb.lib;

public class KBImpl extends AKB {

private MonitoringPolicy initMonitPolicyThroughput() {

System.out

.println("[KB Service] - Throughput Monitoring Policies <start>");

/*

* The name of the policy is the sum of the qosContract ID and the QoS
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* Property to be assured C1-Confidentiality C2-Availability

* C3-Throughput

*/

MonitoringPolicy policyThroughput = new MonitoringPolicy(

"C3-Throughput");

/*

* ContextCondition that comes from the QoSContract C3 - Throughput at

* KB

*/

ContextCondition contextCondition = new ContextCondition();

contextCondition.getObservations().add("DiaMes");

contextCondition.getObservations().add("Tx/min");

contextCondition.getDataTypes().add("int");

contextCondition.getDataTypes().add("int");

contextCondition.getOperations().add(ContextCondition.OPE_OBSERVATION);

contextCondition.getOperations().add(ContextCondition.OPE_OBSERVATION);

policyThroughput.setMonitoringContext(contextCondition);

policyThroughput.setObservation(new Observation(

Observation.TYPE_INVOKE, 60, Observation.OPE_COUNT));

System.out

.println("[KB Service] - Throughput Monitoring Policies <end>");

return policyThroughput;

}

}

Figure B.4: Java Class Implementation for the KB Abstract class
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Appendix C

Composite Files

Figure C.1 presents the representation of our reference architecture as SCA components and de-
scribes the SCA Composite files. Note that each component has its own composite file and therefore
are not explicit in the Figure. this Section describes each composite file in our implementation.

Figure C.1: An instantiation of our reference architecture in terms of SCA Components and Composites

C.1 MAPE-K.composite

The MAPE-K.composite file is the Composite that groups all the components in our reference
architecture. In this file, we include all the other composites. Figure C.2 presents the Composite
File for the reference architecture.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:frascati="http://frascati.ow2.org/xmlns/sca/1.1" name="MAPE-K-Loop">

<component name="KB">

<implementation.composite name="KBRMIService.composite"/>
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</component>

<component name="AMC">

<implementation.composite name="AMCRMIService.composite"/>

</component>

<component name="Effector">

<implementation.composite name="EffectorRMIService.composite"/>

</component>

<component name="Executor">

<implementation.composite name="ExecuterRMIService.composite"/>

</component>

<component name="Planner">

<implementation.composite name="PlannerRMIService.composite"/>

</component>

<component name="Analyzer">

<implementation.composite name="AnalyzerRMIService.composite"/>

</component>

<component name="Monitor">

<implementation.composite name="MonitorRMIService.composite"/>

</component>

<component name="Sensor">

<implementation.composite name="SensorRMIService.composite"/>

</component>

</composite>

Figure C.2: MAPE-K Composite file

C.2 KBRMIService.composite

This Composite file described in Figure C.3 corresponds to the Knowledge Base (KB) component
presented in Figure C.1. In this file the KB component exposes one service named KB through the
network interface localhost and the port 1103. This component does not require services from
other components. The communication protocol described in this composite file is RMI (Remote
Method Invocation).
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<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:frascati="http://frascati.ow2.org/xmlns/sca/1.1" name="KBRMIService"

targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912">

<component name="KBServiceComponent">

<implementation.java class="kb.lib.KBImpl"/>

<service name="KBService">

<interface.java interface="kb.api.KBService"/>

</service>

</component>

<service name="KBService" promote="KBServiceComponent/KBService">

<frascati:binding.rmi host="localhost" port="1103" serviceName="KB"/>

</service>

</composite>

Figure C.3: Knowledge Base Composite file

C.3 AMCRMIService.composite

This Composite File described in Figure C.4 corresponds to the Administrator Management Con-
sole (AMC) component presented in Figure C.1. In this file the AMC component exposes one
service named AMC through the network interface localhost and the port 1199. This compo-
nent does not require services from other components. The communication protocol described in
this composite file is RMI (Remote Method Invocation).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:frascati="http://frascati.ow2.org/xmlns/sca/1.1" name="AMCRMIService"

targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912">

<component name="AMCServiceComponent">
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<implementation.java class="amc.lib.AMCImpl"/>

<service name="AMCService">

<interface.java interface="amc.api.AMCService"/>

</service>

</component>

<service name="AMCService" promote="AMCServiceComponent/AMCService">

<frascati:binding.rmi host="localhost" port="1199" serviceName="AMC"/>

</service>

</composite>

Figure C.4: Administrator Management Console Composite file

C.4 EffectorRMIService.composite

This Composite file described in Figure C.5 corresponds to the Effector component presented in
Figure C.1. In this file the Effector component exposes one service named Effector through the
network interface localhost and the port 1106. This component does not require services from
other components. The communication protocol described in this composite file is RMI (Remote
Method Invocation).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:frascati="http://frascati.ow2.org/xmlns/sca/1.1" name="EffectorRMIService"

targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912">

<component name="EffectorServiceComponent">

<implementation.java class="effector.lib.EffectorImpl"/>

<service name="EffectorService">

<interface.java interface="effector.api.EffectorService"/>

</service>

</component>
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<service name="EffectorService" promote="EffectorServiceComponent">

<frascati:binding.rmi host="localhost" port="1106" serviceName="Effector"/>

</service>

</composite>

Figure C.5: Effector Composite file

C.5 ExecuterRMIService.composite

This Composite file described in Figure C.6 corresponds to the Executer component presented in
Figure C.1. In this file the Executer component exposes one service named Executer through the
network interface localhost and the port 1105. This component also requires a service named
Effector through the network interface localhost and the port 1106. The communication protocol
described in this composite file is RMI (Remote Method Invocation).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:frascati="http://frascati.ow2.org/xmlns/sca/1.1" name="ExecuterRMIService"

targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912">

<component name="ExecuterServiceComponent">

<implementation.java class="executer.lib.ExecuterImpl"/>

<service name="ExecuterService">

<interface.java interface="executer.api.ExecuterService"/>

</service>

<reference name="effectorService"/>

</component>

<service name="ExecuterService" promote="ExecuterServiceComponent">

<frascati:binding.rmi host="localhost" port="1105" serviceName="Executer"/>

</service>

<reference name="effector" promote="ExecuterServiceComponent/effectorService">

<frascati:binding.rmi host="localhost" port="1106" serviceName="Effector"/>
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</reference>

</composite>

Figure C.6: Executer Composite file

C.6 PlannerRMIService.composite

This Composite file described in Figure C.7 corresponds to the Planner component presented in
Figure C.1. In this file the Planner component exposes one service named Planner through the
network interface localhost and the port 1104. This component also requires two services, one is
the service Executer through the network interface localhost and the port 1105 and the other is
the service KB through the network interface localhost and the port 1103. The communication
protocol described in this composite file is RMI (Remote Method Invocation).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:frascati="http://frascati.ow2.org/xmlns/sca/1.1" name="PlannerRMIService"

targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912">

<component name="PlannerServiceComponent">

<implementation.java class="planner.lib.PlannerImpl" />

<service name="PlannerService">

<interface.java interface="planner.api.PlannerService" />

</service>

<reference name="kbService" />

<reference name="executerService" />

</component>

<service name="PlannerService" promote="PlannerServiceComponent">

<frascati:binding.rmi host="localhost" port="1104"

serviceName="Planner" />

</service>

<reference name="kbService" promote="PlannerServiceComponent/kbService">
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<frascati:binding.rmi host="localhost" port="1103"

serviceName="KB" />

</reference>

<reference name="executer" promote="PlannerServiceComponent/executerService">

<frascati:binding.rmi host="localhost" port="1105"

serviceName="Executer" />

</reference>

</composite>

Figure C.7: Planner Composite file

C.7 AnalyzerRMIService.composite

This Composite file described in Figure C.8 corresponds to the Analyzer component presented in
Figure C.1. In this file the Analyzer component exposes one service named Analyzer through
the network interface localhost and the port 1101. This component also requires three services,
one is the service KB through the network interface localhost and the port 1103, other is the
service AMC through the network interface localhost and the port 1199, and the last one is the
service Planner through the network interface localhost and the port 1104. The communication
protocol described in this composite file is RMI (Remote Method Invocation).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:frascati="http://frascati.ow2.org/xmlns/sca/1.1" name="AnalyzerRMIService"

targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912">

<component name="AnalyzerServiceComponent">

<implementation.java class="analyzer.lib.AnalyzerImpl"/>

<service name="AnalyzerService">

<interface.java interface="analyzer.api.AnalyzerService"/>

</service>

<reference name="amcService"/>

<reference name="kbService"/>

<reference name="plannerService"/>
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</component>

<service name="AnalyzerService" promote="AnalyzerServiceComponent">

<frascati:binding.rmi host="localhost" port="1101" serviceName="Analyzer"/>

</service>

<reference name="amcService" promote="AnalyzerServiceComponent/amcService">

<frascati:binding.rmi host="localhost" port="1199" serviceName="AMC"/>

</reference>

<reference name="kbService" promote="AnalyzerServiceComponent/kbService">

<frascati:binding.rmi host="localhost" port="1103" serviceName="KB"/>

</reference>

<reference name="plannerService"

promote="AnalyzerServiceComponent/plannerService">

<frascati:binding.rmi host="localhost" port="1104" serviceName="Planner"/>

</reference>

</composite>

Figure C.8: Analyzer Composite file

C.8 MonitorRMIService.composite

This Composite file described in Figure C.9 corresponds to the Monitor component presented in
Figure C.1. In this file the Monitor component exposes one service named Monitor through the
network interface localhost and the port 1100. This component also requires two services, one is
the service KB through the network interface localhost and the port 1103, and the other is the
service Analyzer through the network interface localhost and the port 1101. The communication
protocol described in this composite file is RMI (Remote Method Invocation).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:frascati="http://frascati.ow2.org/xmlns/sca/1.1" name="MonitorRMIService"

targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912">

<component name="MonitorServiceComponent">
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<implementation.java class="monitor.lib.MonitorImpl"/>

<service name="MonitorService">

<interface.java interface="monitor.api.MonitorService"/>

</service>

<reference name="kbService"/>

<reference name="analyzerService"/>

</component>

<service name="MonitorService" promote="MonitorServiceComponent/MonitorService">

<frascati:binding.rmi host="localhost" port="1100" serviceName="Monitor"/>

</service>

<reference name="kbService" promote="MonitorServiceComponent/kbService">

<frascati:binding.rmi host="localhost" port="1103" serviceName="KB"/>

</reference>

<reference name="analyzerService"

promote="MonitorServiceComponent/analyzerService">

<frascati:binding.rmi host="localhost" port="1101" serviceName="Analyzer"/>

</reference>

</composite>

Figure C.9: Monitor Composite file

C.9 SensorRMIService.composite

This Composite file described in Figure C.10 corresponds to the Sensor component presented in
Figure C.1. In this file the Sensor component exposes one service named Sensor through the
network interface localhost and the port 1102. This component also requires a service named
Monitor through the network interface localhost and the port 1100. The communication protocol
described in this composite file is RMI (Remote Method Invocation).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:frascati="http://frascati.ow2.org/xmlns/sca/1.1" name="SensorRMIService"
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targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912">

<component name="SensorServiceComponent">

<implementation.java class="sensor.lib.SensorImpl" />

<service name="SensorService">

<interface.java interface="sensor.api.SensorService" />

</service>

<reference name="monitorService" />

</component>

<service name="SensorService" promote="SensorServiceComponent/SensorService">

<frascati:binding.rmi host="localhost" port="1102"

serviceName="Sensor" />

</service>

<reference name="monitorService"

promote="SensorServiceComponent/monitorService">

<frascati:binding.rmi host="localhost" port="1100"

serviceName="Monitor" />

</reference>

</composite>

Figure C.10: Sensor Composite file

62



Bibliography

[1] Len Bass, Paul Clements, and Rick Kazman. Software Architecture In Practice. Addison-
Wesley, 2003.

[2] M. Beisiegel, H. Blohm, D. Booz, M. Edwards, and O. Hurley. Service Component Architec-
ture, Assembly Model Specication. Specication Version 1.0. 2007.

[3] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs,
V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A. Müller,
S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, , and J. Whittle. Software engineering for
self-adaptive systems: A research roadmap. Software engineering for self-adaptive systems,
LNCS 5525:1 – 26, 2009.

[4] Microsoft Corp. Introducing Windows Communication Foundation in .NET Framework 4.
http://msdn.microsoft.com/library/ee958158.aspx (Last visited: Jan/2012).

[5] R. Dawson, R. Desmarais, H.M. Kienle, and H.A Müller. Monitoring in Adaptive Systems
Using Reflection. ACM/IEEE, SEAMS 2008:81 – 88, 2008.

[6] A.G. Ganek and T.A. Corbi. The dawning of the autonomic computing era. IBM Systems
journal, 42(1):5–18, 2003.

[7] David Garlan, Shang-Wen Chen, An-Cheng Huang, Bradley Schmerl, and Peter Steekiste.
Rainbow: Architecture-based self-adaptation with reusable infrastructure. IEEE Computer,
37(10):46–54, 2004.

[8] David Garlan and Mary Shaw. An Introduction to software architecture. School of computer
science. Carnegie Mellon University, 1994.

[9] H. Giese, Y. Brun, J. D. M. Serugendo, C. Gacek, H. Kienle, H. Müller, M. Pezzè, , and
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