Quiz # 7 Chapter 10 Suggested Answers

- Choose the **MOST CORRECT** answer
- You have 5 minutes to solve out this quiz
- 1. Suppose you have the next model: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \varepsilon_i$ and you find out that the p-value corresponding to the significance test of β_2 is 0.001. In presence of **no** homokedasticity, you may conclude:
 - a. β_2 is statistically significant.
 - b. \hat{Y}_i increases in $\hat{oldsymbol{eta}}_2$ when X_{2i} increases in one unit.
 - c. β_2 is not statistically significant.
 - d. None of the above.
- 2. For both heteroskedastic and homoskedastic disturbances, the distribution of $\hat{\beta}$ collapses around the true value as n grows because:
 - a. The Central Limit Theorem.
 - b. OLS estimators are unbiased ergo consistent.
 - c. OLS estimators are BLUE.
 - d. All of the above.
 - e. None of the above.
- 3. About the OLS estimator of the variance of the coefficients of certain model with $\sigma_i^2 = \sigma^2 X_i^2$, you can affirm that:
 - a. It remains unbiased but inefficient.
 - b. It is biased and inconsistent.
 - c. It is correct
 - d. None of the above.
- 4. Which of the next test for Heteroskedasticity is the most general?
 - a. Breusch-Pagan test
 - b. Goldfeld-Quandt test.
 - c. Barro test
 - d. White test.
 - e. None of the above.
- 5. About White's Heteroskedasticity variance estimator, we can affirm that:
 - a. Although consistent It is biased.
 - b. It is better than the OLS estimator in presence of no Heteroskedasticity.
 - c. It is unbiased and consistent.
 - d. None of the above.