PRIMER EXÁMEN PARCIAL DE CÁLCULO EN VARIAS VARIABLES

Profesor: Johann Suárez Motato Septiembre 3 de 2009

Grupo: 05

Nombres y apellidos: _____ Código: ____

- 1. (4 pts) Determine la convergencia o divergencia de la sucesión $\{(\frac{n+1}{n})^n\}$
- 2. (20 pts) Determine si la serie dada converge absoluta o condicionalmente y si es posible calcule su suma:

si es posible calcule su suma:
$$a) \sum_{n=1}^{\infty} \ln(\frac{1}{n}) \quad b) \sum_{n=1}^{\infty} \frac{n^{k-1}}{n^k + 1} \quad c) \sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)} \quad d) 1 + 0, 1 + 0, 01 + 0, 001 + \dots$$

- 3. (6 pts) Calcule el intervalo de convergencia para la serie $\sum_{n=1}^{\infty} \frac{(x-3)^{x-1}}{3^{n-2}}$
- 4. (8 pts) Escriba los cuatro primeros términos de una serie de potencias que aproxime el valor de $\int_0^1 \frac{\sin t^2}{t^2} dt$
- 5. (7 pts) Encuentre una serie de Maclaurin para la función $f(x) = \sqrt[4]{1+x^4}$
- 6. (9 pts) Determine la veracidad o falsedad de los siguientes enunciados:
 - a) Si la sucesión $\{a_n\}$ converge, entonces $\{\frac{a_n}{n}\}$ converge a cero
 - b) Si $\sum a_n$ diverge, entonces $\sum |a_n|$ diverge

c)
$$\sum_{n=0}^{\infty} \frac{1}{2^n} + \sum_{n=0}^{\infty} \frac{1}{n(n+1)} = 3$$

Bono (6 pts) Considere la sucesión $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2}+\sqrt{2}}$, Halle una fórmula de recurrencia a_n y calcule $\lim_{n\to\infty} a_n$

1