ALGEBRA Y FUNCIONES. Grupo 19

QUIZ No 4 23 de abril de 2010

NOTA: Las siguientes preguntas son de múltiple opción con única respuesta válida. Debe seleccionar la respuesta correcta y justificar su elección. Respuesta sin justificación no tiene valor alguno.

- 1) (12 puntos) sean α y β dos ángulos en posición estándar con lados terminales en el tercer cuadrante. Si $\cos \alpha = -\frac{2}{5}$ y $\cos \beta = -\frac{3}{5}$, entonces
 - a) $sen(\alpha \beta) = \frac{8-3\sqrt{21}}{25}$ y el lado terminal del ángulo $\alpha \beta$ está en el III cuadrante
 - **b)** $sen(\alpha \beta) = \frac{8-3\sqrt{21}}{25}$ y el lado terminal del ángulo $\alpha \beta$ está en el IV cuadrante
 - c) $sen(\alpha \beta) = \frac{3\sqrt{21} 8}{25}$ y el lado terminal del ángulo $\alpha \beta$ está en el I cuadrante
 - **d)** $sen(\alpha \beta) = \frac{3\sqrt{21} 8}{2\pi}$ y el lado terminal del ángulo $\alpha \beta$ está en el II cuadrante
- 2) (12 puntos) Los valores de x en el intervalo $[0, 2\pi)$ que satisfacen la ecuación $\cos(2x) + \cos x =$
- **a)** $\frac{\pi}{6}, \frac{5\pi}{3} y \pi$ **b)** $\frac{\pi}{3}, \frac{5\pi}{6} y \pi$ **c)** $\frac{\pi}{3}, \frac{5\pi}{3} y \pi$ **d)** $\frac{\pi}{6}, \frac{5\pi}{6} y \pi$
- 3) (14 puntos) De un triángulo ABC se sabe que $\beta = 60^{\circ}$, $a = 5 \, cm$ y $c = 8 \, cm$. En este triángulo los valores de b y sen α son
 - **a)** $b = 7 \ cm \ y \ sen \ \alpha = \frac{5\sqrt{3}}{14}$ **b)** $b = 7 \ cm \ y \ sen \ \alpha = \frac{5}{14}$ **c)** $b = 5 \ cm \ y \ sen \ \alpha = \frac{\sqrt{3}}{2}$ **d)** $b = 5 \ cm$
- 4) (12 puntos) La piola de una cometa se encuentra tensa y forma un ángulo de 60° con la horizontal. Si la piola mide 200 metros y la persona que eleva la cometa sostiene la piola desde una altura, con respecto al suelo, de 1 metro, entonces la altura de la cometa, en metros, con respecto al suelo es
 - a) $1 + 100\sqrt{3}$
- **b)** $100\sqrt{3}$
- c) $1 + 200\sqrt{3}$
- **d)** $200\sqrt{3}$

Profesor: Carlos A Quintero