Segundo Parcial de Álgebra Lineal

Profesor: Johann Suárez Motato Octubre 16 de 2007 Grupo 13

1. (24 pts)

- a) Demuestre que si A es antisimétrica y no singular, A^{-1} es antisimétrica.
- b) Demuestre que si A es una matriz de $n \times n$ no singular tal que $A^2 = A$, entonces det A = 1.
- c) Demuestre que si A es una matriz de $n \times n$, entonces $\det(adj(A)) = [\det(A)]^{n-1}$.
- d) Sean W_1 y W_2 subespacios de un espacio vectorial V. Sea

$$W_1 + W_2 = \{v \in V : v = w_1 + w_2, w_1 \in W_1; w_2 \in W_2\}$$

Muestre que $W_1 + W_2$ es un subespacio de V

- e) Sean v_1, v_2 y v_3 vectores en un espacio vectorial, tales que $\{v_1, v_2\}$ es Linealmente Independiente. Muestre que si v_3 no pertenece a gen $\{v_1, v_2\}$, entonces $\{v_1, v_2, v_3\}$ es Linealmente Independiente.
- f) Demuestre que si $\{v_1, v_2, ..., v_n\}$ es una base para un espacio vectorial V y $c \neq 0$ entonces $\{cv_1, v_2, ..., v_n\}$ también es una base para V.
- 2. (4 pts) Si |A| = 3 donde

$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$

Calcule |C| si

$$C = \begin{pmatrix} a_2 & a_1 & a_3 \\ b_2 - 2a_2 & b_1 - 2a_1 & b_3 - 2a_3 \\ c_2 & c_1 & c_3 \end{pmatrix}$$

- 3. (4 pts) Determine si el conjunto de todas las matrices simétricas de $n \times n$ es un subespacio de $\mathbb{M}_{n \times n}$.
- 4. (12 pts)
 - a) Determine si el conjunto de polinomios $\{t^3+2t+1,t^2-t+2,t^3+2,-t^3+t^2-5t+2\}$ generan a P_3 .
 - b) Dé un elemento que esté en $gen\{t^3+2t+1, t^2-t+2, t^3+2, -t^3+t^2-5t+2\}.$
 - c) Determine si el polinomio $t^3+2t^2-4t+7 \in gen\{t^3+2t+1,t^2-t+2,t^3+2,-t^3+t^2-5t+2\}$
- 5. (6 pts) Calcule una base y la dimensión del subespacio de P_3 formado por todos los polinomios de la forma $at^3 + bt^2 + ct + d$ donde b = 3a 5d y c = d + 4a